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Abstract

Modern deep neural networks (DNNs) are
vulnerable to adversarial attacks and adver-
sarial training has been shown to be a promis-
ing method for improving the adversarial ro-
bustness of DNNs. Pruning methods have
been considered in adversarial context to re-
duce model capacity and improve adversarial
robustness simultaneously in training. Ex-
isting adversarial pruning methods generally
mimic the classical pruning methods for nat-
ural training, which follow the three-stage
’training-pruning-fine-tuning’ pipelines. We
observe that such pruning methods do not
necessarily preserve the dynamics of dense
networks, making it potentially hard to be
fine-tuned to compensate the accuracy degra-
dation in pruning. Based on recent works of
Neural Tangent Kernel (NTK), we systemati-
cally study the dynamics of adversarial train-
ing and prove the existence of trainable sparse
sub-network at initialization which can be
trained to be adversarial robust from scratch.
This theoretically verifies the lottery ticket
hypothesis in adversarial context and we re-
fer such sub-network structure as Adversarial
Winning Ticket (AWT). We also show empiri-
cal evidences that AWT preserves the dynam-
ics of adversarial training and achieve equal
performance as dense adversarial training.

1 Introduction

Deep neural networks (DNN) are widely used as the
state-of-art machine learning classification systems due
to its great performance gains in recent years. Mean-
while, as pointed out in Szegedy et al. (2014), state-
of-the-art DNN are usually vulnerable to attacks by
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adversarial examples, inputs that are distinguishable to
human eyes but can fool classifiers to make arbitrary
predictions. Such undesirable property may prohibit
DNNs from being applied to security-sensitive applica-
tions. Various of adversarial defense methods (Good-
fellow et al., 2015; Papernot et al., 2016; Samangouei
et al., 2018; Schott et al., 2019; Sinha et al., 2018) were
then proposed to prevent adversarial examples attack.
However, most of the defense methods were quickly
broken by new adversarial attack methods. Adversarial
training, proposed in Madry et al. (2018), is one among
the few that remains resistant to adversarial attacks.

On the other hand, DNNs are often found to be highly
over-parameterized. Network pruning is shown to be
an outstanding method which significantly reduces the
model size. Typical pruning algorithms follow the three-
stage ’training-pruning-fine-tuning’ pipelines, where
’unimportant’ weights are pruned according to certain
pruning strategies, such as magnitudes of weights. How-
ever, as observed in Liu et al. (2019), fine-tuning a
pruned model with inherited weights only gives compa-
rable or worse performance than training that model
with randomly initialized weights, which suggests that
the inherited ’important’ weights are not necessarily
useful for fine-tuning. We argue below that the change
of model outputs dynamics is a potential reason for
this phenomenon.

As proposed in Lee et al. (2019), the dynamics of model
outputs can be completely described by the Neural Tan-
gent Kernel (NTK) and the initial predictions. Hence
the difference of dynamics between two neural networks
can be quantified by the difference of their NTKs and
initial predictions. Based on this result, Liu and Zenke
(2020) proposed Neural Tangent Transfer (NTT) to
find trainable sparse sub-network structure which pre-
serves the dynamics of model outputs by controlling
the NTK distance and target distance between dense
and sparse networks. In Figure 1, we empirically com-
pare various statistics of NTT with the well-known
Dynamics Network Surgery (DNS) proposed in Guo
et al. (2016) during mask searching and retraining/fine-
tuning procedures. In Figure 1 (a), train and test
accuracy increase during mask search for both NTT
and DNS. This indicates that both methods successfully
find sparse network with good performance. However,
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Figure 1: (a)-(c) Statistics of NTT and DNS during mask searching. (d) Train and test accuracy during fine-tuning.

as shown in Figure 1 (b) and (c), the NTK distances
and target distances between dense and sparse networks
obtained by NTT remain in a low scale, while for DNS
these two quantities blow up. This indicates that DNS
flows in a different way as NTT, which lead to a differ-
ent dynamics as the original dense network. As a result,
we can see in Figure 1 (d) that the sparse network found
by DNS is harder to be fine-tuned, while we can train
the sparse network obtained by NTT from scratch to
get a better performance. This observation suggests
that preserving the dynamics of outputs does help to
find trainable sparse structures. Experimental details
will be presented in the supplementary materials.

On the other hand, Frankle and Carbin (2018) con-
jectured the Lottery Ticket Hypothesis (LTH), which
states that there exists sub-network structure which
can reach comparable performance with the original
network if trained in isolation. Such sub-network is
called winning ticket. The existence of winning tickets
allows us to train a sparse network from scratch with
desirable performance. In particular, NTT as a fore-
sight pruning method, provides a verification of LTH
in natural training scenarios. Inspired by this obser-
vation, we consider the existence of winning ticket in
adversarial context, which also preserves the dynamics
of adversarial training. We call such a sparse structure
an Adversarial Winning Ticket (AWT). The benefit of
looking for AWT is that its robustness is guaranteed
by robustness of dense adversarial training, which has
been theoretically (Tu et al., 2019) and empirically
(Madry et al., 2018) justified.

We briefly summarize the the contributions of this
paper as follows:

• We systematically study the dynamics of adversar-
ial training and propose a new kernel to quantify
the dynamics. We refer this kernel as Mixed Tan-
gent Kernel (MTK).

• We propose a method to find AWT, which can be

used to verify the LTH in adversarial context. Un-
like other pruning methods in adversarial setting,
AWT is obtained at initialization.

• We conduct various experiments on real datasets
which show that when fully trained, the AWT
found by our method can achieves comparable
performance when compared to dense adversarial
training. These results verify the LTH empirically.

The rest of this paper is organized as follows: In Section
2, we discuss the related works. In Section 3, we develop
the theory of adversarial training dynamics and state
the existence theorem. In Section 4 we experiment on
real datasets to test the performance of AWT. Finally
we conclude and discuss some possible future works in
Section 5. Proof details and additional experimental
results are given in the Appendix.

2 Related Works

2.1 Adversarial Robust Learning

The study of adversarial examples naturally splits into
two areas: attack and defense. Adversarial attack meth-
ods aim to fool state-of-the-art networks. In general,
attack methods consist of white-box attack and black-
box attack, depending on how much information about
the model we can have. White-box attacks are widely
used in generating adversarial examples for training or
testing model robustness where we can have all informa-
tion about the model. This includes Fast Gradient Sign
Method (FGSM) (Goodfellow et al., 2015), Deep Fool
(Moosavi-Dezfooli et al., 2016), AutoAttack (Croce and
Hein, 2020) and so on. Black-box attacks (Chen et al.,
2017; Maho et al., 2021) are usually developed to attack
model in physical world, therefore we have very limited
information about the model structure or parameters.

Meanwhile, defense methods have been studied to train
an adversarial robust network which can prevent at-
tacks from adversarial examples. Augmentation with
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adversarial examples generated by strong attack algo-
rithms has been popular in the literature. Madry et al.
(2018) motivates Projected Gradient Descent (PGD) as
a universal ’first order adversary’ and solve a min-max
problem by iteratively generating adversarial examples
and parameter updating on adversarial examples. Such
method is referred as adversarial training (AT). The
convergence and performance of AT have been theoret-
ically justified by recent works (Tu et al., 2019; Zhang
et al., 2020; Gao et al., 2019). Also, methods (Shafahi
et al., 2019; Wong et al., 2020) have been developed
to speed up the training of AT for large scale datasets
such as ImageNet.

2.2 Sparse Learning

Pruning Methods Network pruning (Han et al.,
2015; Guo et al., 2016; Zeng and Urtasun, 2018; Li
et al., 2016; Luo et al., 2017; He et al., 2017; Zhu and
Gupta, 2017; Zhou et al., 2021b,a) has been exten-
sively studied in recent years for reducing model size
and improve the inference efficiency of deep neural net-
works. Since it is a widely-recognized property that
modern neural networks are always over-parameterized,
pruning methods are developed to remove unimportant
parameters in the fully trained dense networks to alle-
viate such redundancy. According to the granularity
of pruning, existing pruning methods can be roughly
divided into two categories, i.e., unstructured pruning
and structured pruning. The former one is also called
weight pruning, which removes the unimportant pa-
rameters in an unstructured way, that is, any element
in the weight tensor could be removed. The latter one
removes all the weights in a certain group together,
such as kernel and filter. Since structure is taken into
account in pruning, the pruned networks obtained by
structured pruning are available for efficient inference
on standard computation devices. In both structured
and unstructured pruning methods, their key idea is
to propose a proper criterion (e.g., magnitude of the
weight) to evaluate the importance of the weight, kernel
or filter and then remove the unimportant ones. he re-
sults in the literature (Guo et al., 2016; Liu et al., 2019;
Zeng and Urtasun, 2018; Li et al., 2016) demonstrate
that pruning methods can significantly improve the
inference efficiency of DNNs with minimal performance
degradation, making the deployment of modern neural
networks on resource limited devices possible.

Along the research line of LTH, recent works, e.g.,
SNIP (Lee et al., 2018) and GraSP (Wang et al., 2019),
empirically show that it is possible to find a winning
ticket at intialization step, without iteratively training
and pruning procedure as the classical pruning methods.
The key idea is to find a sub-network, which preserves
the gradient flow at initialization. NTT (Liu and Zenke,

2020) utilizes the NTK theory and prune the weights
by preserving the training dynamics of model outputs,
which is captured by a system of differential equations.

Adversarial Pruning Methods Recent works by
Guo et al. (2018) have proven sparsity can improve
adversarial robustness. A typical way of verifying the
Lottery Ticket Hypothesis (LTH) is finding the winning
ticket by iteratively training and pruning. Such strat-
egy is also considered in adversarial context (Cosentino
et al., 2019; Wang et al., 2020; Li et al., 2020; Gilles,
2020), with natural training replaced by adversarial
training. Other score based pruning methods have also
been considered (Sehwag et al., 2020). Recent work
(Fu et al., 2021) also considered sub-network structure
with inborn robustness without training.

Other works bring in the model compression meth-
ods into sparse adversarial training. Gui et al. (2019)
integrates pruning, low-rank factorization and quanti-
zation into a unified flexible structural constraint. Ye
et al. (2019) proposes concurrent weight pruning to
reach robustness. Both works introduce certain sparse
constraints and solve the optimization problem under
alternating direction method of multipliers (ADMM)
framework.

2.3 Neural Tangent Kernel

Recent works by Jacot et al. (2018) consider the train-
ing dynamics of deep neural network outputs and pro-
posed the Neural Tangent Kernel (NTK). Jacot et al.
(2018) shows under the infinite width assumption, NTK
converges to a deterministic limiting kernel. Hence the
training is stable under NTK. NTK theory has been
widely used in analyzing the behavior of neural net-
works. Lee et al. (2019) proves infinitely wide multilayer
perceptrons (MLP) evolve as linear model, which can be
described as the solution of a different equation deter-
mined by the NTK at initialization. Arora et al. (2019)
further shows that ultra-wide MLPs behave as kernel
regression model under NTK. These results have also
been applied to different areas in deep learning, such
as foresight network pruning (Liu and Zenke, 2020),
federated learning (Huang et al., 2021) and so on.

3 Dynamics Preserving Sub-Networks

In this section, we verify the Lottery Ticket Hypothesis
(LTH) in adversarial context by showing the existence
of Adversarial Winning Ticket (AWT). We first derive
the equations describing the dynamics of adversarial
training. Then we propose the optimization problem of
finding the AWT by controlling the sparse adversarial
training dynamics. Finally we prove an error bound
between the dense model outputs and the sparse model
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outputs, which implies the AWT has the desired theo-
retical property.

3.1 Dynamics of Adversarial Training

Let D = X × Y = {(x1, y1), · · · , (xN , yN )} be the em-
pirical data distribution, fθ(x) ∈ Rk×1 the network
function defined by a fully-connected network1, and
fθ(X) = vec

(
[fθ(x)]x∈X

)
∈ Rk|D|×1 be the model out-

puts on training data.

Recall that adversarial training solves the following
optimization problem:

min
θ
L = E

(x,y)∼D
max

r∈Sε(x)
ℓ(fθ(x+ r), y)

=
1

N

N∑
i=1

max
ri∈Sε(xi)

ℓ(fθ(xi + ri), yi)
(1)

The inner sub-problem of this min-max optimization
problem is usually solved by an effective attack algo-
rithm. If we use x̃j denote the adversarial example of x
obtained at j-th step, then any k steps ℓp (1 ≤ p ≤ ∞)
iterative attack algorithm with allowed perturbation
strength ε can be formulated as follows:

x̃0 = x, x̃t = x̃t−1 + rt x̃ = x̃k

s.t. ∥ri∥p ≤ δ
∥∥∥∑ ri

∥∥∥
p
≤ ε ∀1 ≤ t ≤ k

(2)

In practice, PGD attack as proposed in Madry et al.
(2018) is a common choice. Also, for bounded domains,
clip operation need to be considered so that each x̃t

still belongs to the domain. However, such restriction
is impossible to be analyzed in general. So we remove
the restriction by assuming the sample space is un-
bounded. In this case, adversarial training algorithm
updates the parameters by stochastic gradient descent
on adversarial example batches. To be precise, we have
the following discrete parameter updates:

θt+1 = θt − η
dL
dθ

(X̃t) (3)

For an infinitesimal time dt with learning rate ηt = ηdt,
one can obtain the continuous gradient descent by chain
rules as follows:

dθt
dt

=
θt+dt − θt

dt
= −η∇T

θ ft(X̃t)∇ftL(X̃t) (4)

where we use the short notation ft(x) = fθt(x) and the
following notation for convenience2:

∇fL(X) =

 |
∇f ℓ(f(xi), yi)

|

 (5)

1We make this assumption because the NTK theory we
are going to apply is valid for fully-connected networks only.

2We drop the labels Y here since in adversarial training,
the labels assigned to adversarial examples are the same as
the clean ones.

Accordingly, we can obtain the following theorem re-
lating to dynamics of adversarial training.
Theorem 1. Let ft(x) be the timely dependent network
function describing adversarial training process and X̃t

the adversarial examples generated at time t by any
chosen attack algorithm. Then ft satisfies the following
differential equation:

dft
dt

(X) = ∇θft(X)
dθt
dt

= − η

N
∇θft(X)∇T

θ ft(X̃t)∇ftL(X̃t)
(6)

Equation (6) is referred as the dynamics of adversar-
ial training because it describes how the adversarially
trained network function ft evolves along time t. On
the other hand, training a adversarial robust network
fθ is the same as solving Equation (6) for given certain
initial conditions.

Let Θt(X,Y ) = ∇θft(X)∇T
θ ft(Y ), then Θ(X,X) is the

well-known empirical Neural Tangent Kernel (NTK)
, which describes the dynamics of natural training as
studied in Lee et al. (2019). To be precise, if fnat

is the model function of natural training, θnat the
corresponding parameters and Lnat the corresponding
loss, then the dynamics of natural training are given
by

dθnatt

dt
= −η∇T

θ f
nat
t (X)∇fnat

t
Lnat(X) (7)

dfnat
t

dt
(X) = −ηΘt(X,X)∇fnat

t
Lnat(X) (8)

Detailed calculations can be found in Lee et al. (2019).
If we compare Equation (4) with Equation (7), we see
that the gradient descent of adversarial training can
be viewed as natural training with clean images X
replaced by adversarial images X̃t at each step. This
matches our intuition because in practice, the param-
eter update is based on the adversarial examples as
we discussed above, so adversarial training is closely
related to natural training on adversarial images.

However, if we compare Equation (6) and Equation
(8), we can see from the evolution of the model outputs
that the usual NTK is now replaced by Θt(X, X̃t) =
∇θft(X)∇T

θ ft(X̃t), which we call Mixed Tangent Ker-
nel (MTK). Unlike NTK, MTK is not symmetric in
general. It involves both clean images X and adver-
sarial images X̃t. This indicates adversarial training is
not simply a naturally model training on adversarial
images, but some more complicated training method
continuously couples clean images and adversarial im-
ages during training procedure. This coupling of clean
images and adversarial images gives an intuition why
adversarial training can achieve both good model accu-
racy and adversarial robustness.
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Algorithm 1 Finding Adversarial Winning Ticket
1: Input: clean images X, labels Y , model structure

f , dense initialization θ0, learning rate η, adversar-
ial perturbation strength ε, sparsity level k, mask
update frequency Tm.

2: Initialize: initial weight w0 = θ0, initial binary
mask m based on w0, adversarial images R0, t = 1.

3: for t = 1 to N do
4: Sample a mini batch S and calculate the gradient

∇wLawt on S.
5: w ← w − η∇wLawt − βm⊙ w
6: if t % Tm = 0 then
7: update m according to magnitudes of current

w
8: end if
9: end for

10: Return: m.

3.2 Finding Adversarial Winning Ticket

To verify the LTH in adversarial setting, we need to find
out a trainable sparse sub-network which has similar
training dynamics as the dense network. We are then
aiming to find a mask m with given sparsity density
p such that the sparse classifier fs(x) = fm⊙θ(x) can
be trained to be adversarial robust from scratch3. For
simplicity, we assume, as in Lee et al. (2019) and Liu
and Zenke (2020), the cost function to be squared loss4

ℓ(fθ(x), y) =
1

2
∥fθ(x)− y∥2. A discussion of other loss

functions, such as cross-entropy, is given in Appendix
B. Let X̃ be the collection of adversarial examples as
above, then

∇ftL(X̃t) = ft(X̃t)− Y (9)

And therefore, the dynamics of model outputs of dense
network in Equation (6) becomes

dft
dt

(X) = − η

N
Θt(X, X̃t)(ft(X̃t)− Y ) (10)

To achieve our goal, note that the dense classifier ft(x)
in Theorem 1 converges eventually to the solution of
adversarial training, so it is supposed to be adversarial
robust if fully-trained. On the other hand, the dy-
namics of the sparse adversarial training fs

t (x) can be
described similarly as:

dfs
t

dt
(X) = − η

N
Θs

t (X, X̃s
t )(f

s
t (X̃

s
t )− Y ) (11)

3Without loss of generality, we use superscript s to mean
items correspond to sparse networks, while items without
superscript correspond to dense networks.

4Norms without subscript will denote ℓ2 norm.

where X̃s
t is the collection of adversarial images cor-

responding to sparse network and Θs
t (X, X̃s

t ) is the
MTK of sparse classifier. Therefore, to get the desired
mask m, it is sufficient to make fs

t (X) ≈ ft(X) for
all t. According to Equation (10) and Equation (11),
this can be achieved by making the MTK distance and
adversarial target distance between dense and sparse
networks close enough at any time t in the training.
That is to say,

Θt(X, X̃t) ≈ Θs
t (X, X̃s

t ) ft(X̃t) ≈ fs
t (X̃

s
t ) (12)

for all t. Under mild assumptions, we may expect all
these items are determined at t = 0 because of the
continuous dependence of the solution of differential
equations on the initial values. This then leads to the
consideration of the following optimization problem:

min
m
Lawt =

1

N

∥∥∥fθ0(X̃0)− fs
m⊙θ0(X̃

s
0)
∥∥∥2

+
γ2

N2

∥∥∥Θ0(X, X̃0)−Θs
0(X, X̃s

0)
∥∥∥2
F

(13)

where ∥·∥ is the ℓ2 norm of vectors and ∥·∥F is the
Frobenius norm of matrices. In equation (13), the first
and second items in the right hand side are referred as
target distance and kernel distance, respectively. We call
the resulting mask Adversarial Winning Ticket (AWT).
Our method is summarized in algorithm 1. Since the
binary mask m cannot be optimized directly, instead
we train a student network fm⊙w(x). The mask m is
then updated according to the magnitudes of current
weights w after several steps, which is specified by
the mask update frequency. To get sparse adversarial
robust network, the obtained AWT fm⊙θ0(x) will be
adversarially trained from scratch.

This intuition can be further illustrated by Figure 2.
For each iteration of gradient descent (t = 1 to t = 2
in the figure), adversarial training contains two steps:
adversarial attack (vertical dash line) and parameter
update (horizontal dash line). Our goal is to make the
blue curve (sparse) close to the green one (dense). This
can be done by making the attack and parameter up-
date curves of sparse and dense networks close enough
for each time t. However, as we can see from the figure,
ft and fs

t are determined by the initial condition, hence
we get the above optimization problem.

Formally we have the following theorem to estimate
the error bound between dense and sparse outputs.

Theorem 2. Let fθ(x) denote the dense network func-
tion. Suppose fθ has identical number of neurons for
each layer, i.e. n1 = n2 = · · · = nL = n and assume
n is large enough. Denote fs

m⊙θ(x) the corresponding
sparse network with 1 − p weights being pruned. As-
sume f and fs have bounded first and second order
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Figure 2: Schematic illustration of networks’ outputs
evolution under adversarial training. Solid lines rep-
resent continuous training dynamics of dense (green)
and sparse (blue) networks. Triangular marks locate
model outputs at each step under gradient descent.
Vertical dash lines represent adversarial attacks and
correspondingly, horizontal dash lines represent param-
eter updates with respect to given adversarial examples.
The SGD process from t = 1 to t = 2 is marked.

derivatives with respect to x, i.e.

max
t,x

{
∥∂xft∥q , ∥∂xf

s
t ∥q

}
≤ C1,q

max
t,x

{∥∥∂2
xxft

∥∥
p,q

,
∥∥∂2

xxf
s
t

∥∥
p,q

}
≤ C2,q

where we choose an ℓp attack to generate adversarial
examples such that q is the conjugate of p in the sense
of 1/p + 1/q = 1.5 Denote the optimal loss value for
AWT optimization problem (13) to be L∗

awt = α2. Then
for all t ≤ T with T the stop time, with learning rate
η = O(T−1), we have

E
x∈D
∥ft(x)− fs

t (x)∥
2 ≤ 4(α+ 4Cqε)

2 (14)

where Cq = C1,q + εC2,q is a constant.

Note that we put no restriction on any specific attack
algorithm, hence we can choose any strong attack algo-
rithm for generating adversarial examples. In practice,
PGD attack is commonly chosen for adversarial train-
ing. Also, our theoretical results consider any ℓp attack
with 1 ≤ p ≤ ∞. The uniform bound assumption of
derivatives are reasonable. If we take the Taylor ex-
pansion of ft with respect to f0, then the derivatives
are functions of θt. Since we apply weight decay in our
training, θt is uniformly bounded for all t ≤ T , also we
only have finite training data, so the derivatives can

5If p = ∞, we take q = 1.

be assumed to be uniformly bounded. Moreover, Cq

can be adjusted by carefully choosing the regularizing
constant of weight decay. Proof details and a discussion
of the constants are presented in Appendix A.

Equation (14) shows that the expected error between
sparse and dense outputs are bounded by the optimal
loss value and adversarial perturbation strength. In
practice, the optimial loss value α2 and adversarial
perturbation strength ε are small, we may expect the
output of AWT is close to dense output, hence is adver-
sarial robust if fully-trained. Therfore Theorem 2 can
be viewed as theoretical justification of the existence
of LTH in adversarial setting, and we can find AWT
by solving the optimization problem (13).

Theorem 2 reduces to natural training if we take ε =
0. In this case, the AWT found is winning ticket for
natural training. Hence Theorem 2 also verifies the
classical LTH as a special case. Meanwhile, our method
reduces to Neural Tangent Transfer (NTT) in Liu and
Zenke (2020) and Equation (14) gives an error bound of
NTT. Furthermore, for ideal case when α = 0, Equation
(14) implies ft(x) = fs

t (x) for all x, hence the dense
and sparse networks have identical outputs for all time
t, which extends Proposition 1 in Liu and Zenke (2020).

4 Experiments

We now empirically verify the performance of our
method. To be precise, we first show the effectiveness
of our method in preserving the dynamics of adver-
sarial training, that is, our method can find a sparse
sub-network, whose training dynamics are close to the
dense network. Then we evaluate the robustness of the
sparse neural networks obtained by our method. At
last, we give a preliminary experimental result to show
the possibility to extend our method to large-scaled
problems.

4.1 Implementation

We conduct experiments on standard datasets, in-
cluding MNIST (LeCun et al., 1998) and CIFAR-10
(Krizhevsky et al., 2009). All experiments are per-
formed in JAX (Bradbury et al., 2018), together with
the neural-tangent library (Novak et al., 2020). Due
to the high computational and storage costs of NTK,
following the experimental setting in Liu and Zenke
(2020), we mainly evaluate our proposed method on
two networks: MLP and 6-layer CNN. The preliminary
experiment of scalability in Section 4.4 is conducted on
VGG-16 with CIFAR-10.

We use PGD attacks for adversarial training and ro-
bustness evaluation as suggested in Guo et al. (2020)
and Wang et al. (2020). In practice, ℓ∞ attacks are
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(d) ℓ∞, ε = 0.3
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(e) ℓ∞, ε = 0.3
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Figure 3: (a) and (b) are the statistics of AWT during mask searching on MNIST with MLP over different density
levels under ℓ2 attack. (c) presents the adversarial training and test accuracy curves in the training process under
ℓ2 attack. (d)-(e) are the results accordingly under ℓ∞ attack.

commonly used and we use adversarial strength ε = 0.3
for MNIST and ε = 8/255 for CIFAR-10. We take 100
iterations for robustness evaluation, the step size is
taken to be 2.5 · ε/100 as suggested by Madry et al.
(2018). Other detailed experimental configurations
such as the learning rate and batch size can be found
in the supplementary materials.

4.2 Effectiveness in Preservation of Training
Dynamics

In this part, we evaluate the ability of our method
in preserving the training dynamics. To be precise,
at each density level, we first present the evolution
curves of kernel distance and target distance over the
whole procedure of finding the adversarial winning
ticket. Then we show the adversarial training/testing
accuracy during the training process. Since Theorem 2
is valid for any ℓp attack algorithms, we also present
experimental results under ℓ2 attacks as well as ℓ∞
attacks.

Figure 3 (a)/(d) and (b)/(e) show the kernel and target
distance curves at different density levels under ℓ2/ℓ∞
attack. We can see that as the optimization goes on,
both of the kernel and target distances decrease very
quickly. As expected, the distance becomes smaller as

density Cosentino et al. 2019 AWT

full model 98.96/91.14

51.3% 98.07/60.14 99.13/91.21

16.9% 97.73/59.91 96.58/89.30

8.7% 97.20/57.60 94.48/87.51

3.6% 95.58/48.81 91.74/83.60

1.8% 92.67/38.23 87.69/78.66

Table 1: Test accuracy on natural/adversarial examples
over different density levels on MNIST with MLP.

the density level increases. Figures 3 (c)/(f) show the
adversarial training/testing accuracy. We can see that
when the density becomes larger, the accuracy curve
gets closer to the dense one. This indicates that the
training dynamics are well preserved.

To verify the quality of our winning ticket, we compare
our method with the latest work by Cosentino et al.
(2019), which finds the winning ticket by iteratively
pruning and adversarial training. As indicated by the
authors Cosentino et al. (2019), their method is com-
putationally expensive so they only evaluated it on
small MLPs. Therefore we only give the comparison
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Figure 4: Test accuracy on natural and adversarial
examples of CNN trained on MNIST. The density varies
in {0.01, 0.02, 0.03, 0.04, 0.05}.
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Figure 5: Test accuracy on natural and adversarial
examples of CNN trained on CIFAR10.

result on MNIST with MLPs here. Specifically, we give
the test accuracy on natural/adversarial examples in
Table 1. It shows that our method can outperform
the baseline with a large margin. For example, at the
density of 1.8%, the adversarial test accuracy of our
method is 40% higher than that of Cosentino et al. 2019.
We can also see that the accuracy of our method can
converge to the dense model much more quickly than
the baseline as the density increases. This is benefited
from the dynamics preserving property of our sparse
sub-network structure.

4.3 Robustness of Trained Sparse Networks

In this section, we evaluate the robustness of fully
adversarially trained AWT at different density levels.

We first present the test accuracy on natural and adver-
sarial examples of the CNN models trained on MNIST
and CIFAR10. For CIFAR10, the density varies in
{0.05, 0.1, 0.2, 0.3, . . . , 0.9}. For MNIST, since it can
be classified with much sparser networks compared
with CIFAR10, in this section, we only check densities
between {0.01, . . . , 0.05} and the results under higher
density levels can be found in the appendix. Figure 4
and 5 give the results on MNIST and CIFAR10, respec-
tively. Both of these two Figures show that the models
trained by our method have high natural and adversar-
ial test accuracy even when the model is very sparse.
For example, Figure 4 shows that at the density of 0.03,
the model trained by our method can reach the test

accuracy of 0.98 and 0.96 on natural and adversarial
examples, which are quite close to the dense model.
We can also see that the training dynamic, i.e., the
test accuracy curves, can converge to that of the dense
model as the density increases. And the sparse models
obtained by our method can achieve comparable test
accuracy with the dense model after trained with the
same number of epochs.
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Figure 6: Natural and adversarial test accuracy of the
models trained from AWT and random structure on
MNIST with CNN.

We then compare the performance of models trained
from our sparse structure and the random structure
at the same density level. We give the results of
CNN trained on MNIST with the density varies in
{0.01, 0.02, . . . , 0.05} in Figure 6. More results can be
found in the appendix. From Figure 6, our method
can achieve much higher natural and adversarial test
accuracy than the models trained from the random
structure. For example, the network trained by our
method at the density of 1% achieves higher adversar-
ial test accuracy than the model trained from random
structure at the density of 3%. It also shows that the
learning curves of our method are much closer to the
dense model than the random structure. This demon-
strates that our sparse structures indeed have similar
training dynamic with the dense model.

4.4 Discussion on Scalability

In the same situation as existing works on NTK, the
expensive computational cost of NTK hinders us from
conducting large-scale experiments. Fortunately, the
following preliminary experiment shows that the meth-
ods such as sampling on the NTK matrix could be
promising to improve the efficiency of our method.

To be specific, inspired from Jacobi preconditioner
method (Concus et al., 1976) in optimization theory,
we sample only the diagonal elements in the MTK
matrices Θ0(X, X̃0) and Θs

0(X, X̃s
0) in Equation (13)

and keep all other settings the same as above. In
this way, the computational complexity of training can
be significantly reduced. We conduct a preliminary
experiment on CIFAR-10 with large-sized model VGG-
16. To the best of our knowledge, we are the first to
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apply NTK into models as large as VGG-16. The result
is presented in Table 2. It shows that the performance
degradation caused by the sampling is unnoticeable.
We will investigate this kind of approaches to improve
the efficiency of NTK based methods in the future.

density WT S-AWT IWI

10% 45.15 46.68 47.53

5% 40.10 45.87 47.59

Table 2: Adversarial test accuracy of the VGG16
trained on CIFAR10 at different density levels. WT rep-
resents winning ticket, which applies iteratively pruning
and adversarial training method. S-AWT is AWT with
sampling. IWI represents Inverse Weight Inheritance.
WT and IWI results are copied from Wang et al. (2020).

5 Conclusions

We study the evolution of adversarially trained net-
works and obtain a new type of kernel quantifying the
dynamics of adversarial training. We verify the Lottery
Ticket Hypothesis (LTH) (Frankle and Carbin, 2018) in
adversarial setting by solving an optimization problem
to find adversarial winning ticket (AWT), which can
be adversarially trained to be robust from scratch. Our
work includes the classical LTH in natural training as a
special case and extends the bound of Neural Tangent
Transfer (NTT) (Liu and Zenke, 2020). Unlike most
of the adversarial pruning methods, which follow the
classical pruning pipelines, i.e., prune the network dur-
ing training, our method is a foresight pruning method.
To the best of our knowledge, this is the first result
showing that to identify winning tickets at initialization
is possible in the adversarial training scenario.

We would like to point out our main contribution is
the verification of LTH in adversarial setting, rather
than proposing a practical pruning method. Similar to
existing NTK based methods, We did not conduct ex-
periment on large scale datasets, such as ImageNet, due
to the well-known fact that the computation of NTK
is expensive. Moreover, the preliminary experimental
result in Section 4.4 indicates certain approximation
methods such as sampling can be promising to reduce
the computational cost of NTK without noticeable per-
formance degradation. We will further explore this
possibility in our future work.
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Supplementary Materials:
Finding Dynamics Preserving Adversarial Winning Tickets

A Proof of Theorem

Let D = X × Y = {(x1, y1), · · · , (xN , yN )} be the empirical data distribution, fθ(x) ∈ Rk the network function,
and fθ(X) = vec

(
[fθ(x)]x∈X

)
∈ Rk|D|×1 be the model outputs. Note that adversarial training optimizes the

following objective function
min
θ
L = E(x,y)∼D max

r∈Sε(x)
ℓ(fθ(x+ r), y) (A.1)

We use the following notation for convenience:

∇fL(X) =

 |
∇f ℓ(f(xi), y)

|


For squared loss ℓ(f(x), y) =

1

2
∥f(x)− y∥22, this is just

∇fL(X) =

 |
f(xi)− yi

|

 = f(X)− Y

Theorem 3. Let ft(x) := fθt(x) be the timely dependent network function and X̃t the adversarial examples
generated at time t. Then the continuous gradient descent of adversarial training is:

dθt
dt

= − η

N
∇T

θ ft(X̃t)∇fL(X̃t) (A.2)

As a result, ft satisfies the following differential equation:

dft
dt

(X) = ∇θft(X)
dθt
dt

= − η

N
∇θft(X)∇T

θ ft(X̃t)∇fL(X̃t)
(A.3)

Proof. Note that at time t adversarial training consists of an attack step and parameter update step. To be
precise, for some chosen strong attack algorithm, we first generate the set of adversarial examples X̃t, then update
the parameter according to

θt+dt = θt − ηt
∂L
∂θt

(X̃t)

= θt −
ηt
N
∇T

θ ft(X̃t)∇fL(X̃t)

(A.4)

If we take the infinitesimal learning rate to be6 ηt = ηdt and taking the limit dt→ 0, we obtain the continuous
gradient descent as in Equation (A.2). The evolution of ft in Equation (A.3) is a direct result by chain rule.

6The discrete parameter update corresponds to the case when dt = 1.
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We consider the following optimization problem to find AWT:

min
m
Lawt =

1

N

∥∥∥f0(X̃0)− fs
0 (X̃

s
0)
∥∥∥2 + γ2

N2

∥∥∥Θ0(X, X̃0)−Θs
0(X, X̃s

0)
∥∥∥2
F

(A.5)

where Θ(X,Y ) = ∇θf(X)∇θf
T (Y ) is the empirical neural tangent kernel and sup-script s represents quantities

involving sparse structure.
Theorem 4 (Existence of adversarial winning ticket). Let fθ(x) denote the dense network function. Suppose
fθ has identical number of neurons for each layer, i.e. n1 = n2 = · · · = nL = n and assume n is large enough.
Denote fs

m⊙θ(x) the corresponding sparse network with 1−p weights being pruned. Assume f and fs have bounded
first and second order derivatives with respect to x, i.e.

max
t,x

{
∥∂xft∥q , ∥∂xf

s
t ∥q

}
≤ C1,q

max
t,x

{∥∥∂2
xxft

∥∥
p,q

,
∥∥∂2

xxf
s
t

∥∥
p,q

}
≤ C2,q

where we choose an ℓp attack to generate adversarial examples such that q is the conjugate of p in the sense of
1/p+ 1/q = 1.7 Denote the optimal loss value for AWT optimization problem (13) to be L∗

awt = α2. Then for all
t ≤ T with T the stop time, with learning rate η = O(T−1), we have

E
x∈D
∥ft(x)− fs

t (x)∥
2 ≤ 4(α+ 4Cqε)

2 (A.6)

where Cq = C1,q + εC2,q is a constant.

In order to prove the theorem, we need the following lemma of estimation of error bound.
Lemma 1. For any 1 < p ≤ ∞, assume an k iterative ℓp attack algorithm updates as x̃0 = x, x̃t = x̃t−1 + rt
with ∥rt∥p ≤ δ for any 1 ≤ t ≤ k and with total allowed perturbation strength ∥

∑
rj∥p ≤ ε. Assume kδ ≤ 2ε.

If the neural network function f has bounded first and second order derivative with respect to x, i.e. ∥∂xf∥q ≤
C1,q,

∥∥∂2
xxf

∥∥
p,q
≤ C2,q, where q be the conjugate of p such that 1/p+ 1/q = 1. Then for any adversarial example

x̃ generated by the attack algorithm, we have

|f(x̃)− f(x)| ≤ 2εC1,q + 2ε2C2,q = 2εCq (A.7)

Proof of Lemma: Consider the series of second order Taylor expansions for any 1 ≤ t ≤ k

f(x̃t)− f(x̃t−1) = ∂xf(x̃t−1)rt +
1

2
rTt ∂

2
xxf(ξt−1)rt (A.8)

We have

|f(x̃t)− f(x̃t−1)| ≤ ∥∂xf(x̃t−1)rt∥+
∥∥∥∥12rTt ∂2

xxf(ξt−1)rt

∥∥∥∥
≤∥∂xf(x̃t−1)∥q ∥rt∥p +

1

2
∥rt∥p

∥∥∂2
xxf(ξt−1)rt

∥∥
q

≤∥∂xf(x̃t−1)∥q δ +
1

2
δ
∥∥∂2

xxf(ξt−1)
∥∥
p,q
∥rt∥p

≤C1,qδ +
1

2
C2,qδ

2

(A.9)

where we use Hölder inequality in the second step and definition of (p, q) norm in the third step. On the other
hand, by Mean-value theorem we have

∂xf(x̃t) = ∂xf(x̃t−1) + ∂2
xxf(ηt−1)rt (A.10)

Hence we have

∥∂xf(x̃t)∥q ≤ ∥∂xf(x̃t−1)∥q +
∥∥∂2

xxf(ηt−1)rt
∥∥
q

≤ ∥∂xf(x̃t−1)∥q +
∥∥∂2

xxf(ηt−1)
∥∥
p,q
∥rt∥p

≤ C1,q + C2,qδ

(A.11)

7If p = ∞, we take q = 1.
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where we use Minkowski inequality in the first step. Together, we have the following estimation:

|f(x̃)− f(x)| =|f(x̃k)− f(x̃0)|

≤
k∑

t=1

|f(x̃t)− f(x̃t−1)|

≤δ
k∑

t=1

∥∂xf(x̃t−1)∥q +
1

2
δ2

k∑
t=1

∥∥∂2
xxf(ξt−1)

∥∥
p,q

=δ

( k∑
t=1

∥∂xf(x̃0)∥q + C2,qδ(t− 1)

)
+

1

2
δ2kC2,q

=kδC1,q +
1

2
k2δ2C2,q

(A.12)

Then Equation (A.7) is valid if we plug in the assumption kδ ≤ 2ε.

Remark 1: We did not specify any particular algorithm in the presentation of our lemma. In practice, k steps
PGD attacks is the common choice for inner subproblem of adversarial training. For k steps PGD attack, the
number of attack iteration is usually taken to be 7 (ImageNet) or 20 (MNIST/CIFAR-10), so we may assume
k = Ω(1) for future use. The assumption kδ ≤ 2ε is also for practical consideration, where we usually choose the
step size δ approximately to be 2ε/k as suggested in Madry et al. (2018).

Remark 2: We might get more accurate bound by looking deeper into the dynamics of continuous first-order
attack:

dxt

dt
=

dℓ

dx
(ft(xt)), x0 = x (A.13)

The analysis of the above differential equations would possibly weaken the current assumption on derivatives. We
would leave this as a future work.

Now we are ready to prove the main theorem.

Proof of Theorem. Suppose L∗
awt = α2, then we have∥∥∥f0(X̃0)− fs

0 (X̃
s
0)
∥∥∥ ≤ √Nα,

∥∥∥Θ0(X, X̃0)−Θs
0(X, X̃s

0)
∥∥∥
F
≤ N

α

γ

To bound the distance between dense and sparse output, we do induction on time t and prove the following
stronger estimation

∥ft(X)− fs
t (X)∥ ≤

(
1 +

t

T

)√
N
(
α+ 4Cqε

)
(A.14)

where Cq = C1,q + εC2,q and C1,q and C2,q are bounds of first and second order derivative of f . Note that at
t = 0, we have

∥f0(X)− fs
0 (X)∥ ≤

∥∥∥f0(X̃0)− fs
0 (X̃

s
0)
∥∥∥+

∥∥∥f0(X̃0)− f0(X)
∥∥∥+

∥∥∥fs
0 (X̃

s
0)− fs

0 (X)
∥∥∥

≤
√
N
(
α+ 4Cqε

) (A.15)

At time t, assume we have

∥ft(X)− fs
t (X)∥ ≤

(
1 +

t

T

)√
N
(
α+ 4Cqε

)
(A.16)

Then according to the dynamical equation (A.3), we have

ft+1(X) = ft(X)− η

N
Θ(X, X̃t)

(
ft(X̃t)− Y

)
fs
t+1(X) = fs

t (X)− η

N
Θs(X, X̃s

t )
(
fs
t (X̃

s
t )− Y

) (A.17)
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Then∥∥ft+1(X)− fs
t+1(X)

∥∥ ≤ ∥ft(X)− fs
t (X)∥+ η

N

∥∥∥(Θt −Θs
t )(ft(X̃t)− Y )

∥∥∥+
η

N

∥∥∥Θs
t (ft(X̃t)− fs

t (X̃
s
t ))

∥∥∥ (A.18)

Let Kt(X,X) = ∇θft(X)∇T
θ ft(X) be the empirical neural tangent kernel at time t, then according to Theorem

2.1 in Lee et al. (2019), ∥Kt −K0∥F = CK√
n
, where n is the number of neurons in each layer. Therefore we have∥∥∥Θt(X, X̃t)−Θs

t (X, X̃s
t )
∥∥∥
F

≤
∥∥∥Θt(X, X̃t)−Θ0(X, X̃0)

∥∥∥
F
+
∥∥∥Θs

t (X, X̃s
t )−Θs

0(X, X̃0)
∥∥∥
F
+
∥∥∥Θ0(X, X̃0)−Θs

0(X, X̃s
0)
∥∥∥
F

≤∥Kt(X,X)−K0(X,X)∥F + ∥Ks
t (X,X)−Ks

0(X,X)∥F +
∥∥∇θft(X)∇2

θ,xf(ξ)Rt

∥∥
+
∥∥∥∇θf

s
t (X)∇2

θ,xf(ξ̃)R
s
t

∥∥∥
F
+N

α

γ

≤CK√
n

(
1 +

1
√
p

)
+ 2NεC1,qC2,q +N

α

γ

(A.19)

And by Lemma (1), we have∥∥∥f(X̃t)− fs(X̃s
t )
∥∥∥ ≤∥ft(X)− fs

t (X)∥+
∥∥∥f(X̃t)− ft(X)

∥∥∥+
∥∥∥fs

t (X̃t)− fs
t (X)

∥∥∥
≤

(
1 +

t

T

)√
N
(
α+ 4Cqε

)
+ 4
√
NCqε

(A.20)

Then Equation (A.18) reads∥∥ft+1(X)− fs
t+1(X)

∥∥
≤
(
1 +

t

T

)√
N
(
α+ 4Cqε

)
+

η

N

(
CK√
n

(
1 +

1
√
p

)
+ 2NεC1,qC2,q +N

α

γ

)√
Nc

+
η

N
NC2,q

[(
1 +

t

T

)√
N
(
α+ 4Cqε

√
N
)
+ 4
√
NCqε

] (A.21)

where c = max{|f(x)− y| : x ∈ X} is bounded essentially. Take

η = min

{
1

T (2 + c
γ )

,
4Cqε

T
(
2cC1,qC2,q + 8Cq)

)} (A.22)

One can check that if N is sufficiently large such that CK√
Nn(1+ 1√

p )
→ 0, then Equation (A.21) reads

∥∥ft+1(X)− fs
t+1(X)

∥∥ ≤ (
1 +

t+ 1

T

)√
N
(
α+ 4Cqε

)
(A.23)

which completes the proof.

B Discussion on Possible Extensions to Other Loss Functions

We only consider the squared loss for simplicity in our main theorem. However, it is possible to extend our result
to the cross-entropy loss case. Actually, we use cross-entropy loss in our experiment, so we have already checked
our method empirically.

To see how our method works theoretically for cross-entropy loss, let

ℓce(f(x), y) = − log
efy∑
i e

fi
(B.24)

be the cross-entropy loss, where f(x) = [· · · , fj(x), · · · ]T is the model output. Note that we have

∂ℓce
∂fy

=
efy∑
i e

fi
− 1,

∂ℓce
∂fj

=
efj∑
i e

fi
, j ̸= y (B.25)
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Therefore,

∥∇f ℓce(f(x), y)−∇fsℓce(f(x), y)∥2 =
∑
j

(
efj∑
i e

fi
− ef

s
j∑

i e
fs
i

)2

(B.26)

In practice, we may expect the change of model outputs is usually larger than the outputs after cross-entropy
loss, i.e.

∀j,
(

efj∑
i e

fi
− ef

s
j∑

i e
fs
i

)2

≤ [fi(x)− fs
i (x)]

2 (B.27)

Hence, this implies
∥∇f ℓce(f(x), y)−∇f ℓce(f

s(x), y)∥ ≤ ∥f(x)− fs(x)∥ (B.28)

Recall that the dynamics of adversarial training is

dft
dt

(X) = −ηΘt(X, X̃t)∇ftL(X̃t) (B.29)

We may expect the optimization problem of finding adversarial winning ticket for general loss function is

min
m
L′
awt =

1

N

∥∥∥∇fL(X̃0)−∇fsL̃(X̃ ′
0)
∥∥∥+

1

N2

∥∥∥Θ0(X, X̃0)−Θs
0(X, X̃ ′

0)
∥∥∥
F

(B.30)

Now we compare the optimization problem (B.30) with problem (A.5). The first term of problem (B.30), as
discussed above, is bounded by ∥f0(X +R0)− fs

0 (X +Rs
0)∥. This shows that, if we find adversarial winning

ticket according to optimization problem (B.30), the resulting training dynamics is bounded by the one we
obtained before, so is close to the dynamics of dense network also. This suggests that the optimization problem
(A.5) is general for both squared loss and cross-entropy loss.

Remark: We may expect that for many other loss functions, the following condition is true

∥∇f ℓ(f(x), y)−∇fsℓ(fs(x), y)∥ ≤ C ∥f(x)− fs(x)∥ (B.31)

Our method generalizes to the case using any loss function satisfying condition (B.31). Actually, for any convex
loss function ℓ, if the second order derivative is bounded, then the above condition (B.31) is true by Taylor
expansion.
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Figure 7: (a) and (b) are the statistics of AWT in the procedure of searching masks on MNIST with CNN over
different density levels. (c) presents the adversarial training and test accuracy curves in the training process

C More Experimental Results

C.1 Toy Example

We provide here a toy example to illustrate our method. Consider a binary classification problem of mixed Gaussian
distribution p(x) = 0.5N (µ+,Σ+) + 0.5N (µ−, σ−) and any linear classifier C(x) = sgn(fθ(x)) = sgn(θ · x). Let
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µ = 0.5(µ+ − µ−) be the mean difference and suppose Σ+ = Σ− = σ2Id, then the adversarial accuracy with given
adversarial perturbation strength ε can be calculated explicitly using the following result in Shi and Ding (2019):

padv−acc = 1− padv = pm +Φ

(
θ · µ
∥θ∥σ

− ε

σ

)
= pm +Φ

(
∥µ∥
σ

cos γ − ε

σ

) (C.32)

where pm is the misclassification rate, padv is the probability of the existence of adversarial examples, and Φ
is the cumulative density function of standard normal distribution. This shows the adversarial robustness of
C(x) can be measured explicitly by the deflection angle γ between θ and µ. In particular, padv−acc attains its
maximum at θ = µ, i.e. Bayes classifier is the best classifier in the sense of adversarial robustness.

To illustrate our idea, we randomly generate 5000 data points from p(x), where µ+ = [3, 0, · · · , 0] = −µ−,
Σ+ = Σ− = Id and the dimension is d = 100. We minimize the loss in equation (A.5) to obtain a sparse robust
structure with a sparsity level at 10%, i.e. we only keep 10 nonzero coordinates of θ. Then we adversarially train
the AWT to get the sparse robust network. We use SVM as baseline of model accuracy and standard adversarial
training as baseline of adversarial accuracy. The result is summarized in table 3.

Bayes SVM Adv.Tr AWT
acc. 0.999 0.995 0.995 0.995
ang. 0.0 0.555 0.202 0.118
cos. 1.0 0.850 0.980 0.993
rob. 0.843 0.714 0.823 0.838

Table 3: ’cos.’ represents cosine of angle. ’rob.’ represents adversarial accuracy.

Table 3 shows that SVM reaches comparable model accuracy as Bayes model but with a large deflection angle
(0.555 ≈ 31.8◦), this simulates the case that natural training can reach high accuracy but fails to be adversarial
robust. Adversarial training reaches the same model accuracy but also improved adversarial accuracy (0.823),
which is very close to the one of Bayes classifier. This is also reflected by the deflection angle (0.202 ≈ 11.6◦),
which shows a significant decrease when compared with the deflected angle of SVM. Our method (AWT) gets
slightly better performance than the dense adversarial training with only 10% of the weights left.

C.2 More Real Data Experiments

We first present the detailed experimental configurations and then provide the experimental results omited in the
main text due to the space limitation.

Experimental Configuration We conduct experiments on standard datasets, including MNIST (LeCun et al.,
1998), CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009). All experiments are performed in JAX (Bradbury
et al., 2018), together with the neural-tangent library (Novak et al., 2020).

For the neural networks, in this paper, we evaluate our proposed method on two networks: MLP, 6-layer CNN
and VGG16. The MLP is comprised of two hidden layers containing 300 and 100 units with rectified linear
unit(ReLUs) followed with a linear output layer. The CNN has two convolutional layers with 32 and 64 channels,
respectively. Each convoluational layer is followed by a max-pooling layer and the final two layers are fully
connected with 1024 and 10/100 hidden nodes, respectively. For the experiments on VGG16, we explore the
possibility of scaling up our method on large-size modern neural networks by using the technique such as sampling
on the MTK matrix.

We evaluate the performance of our method on different density levels. To be precise: 1) For the experiments
on MNIST with MLP, we vary the density level in {0.018, 0.036, 0.087, 0.169, 0.513}; For the experiments with
CNN, the density level is set to be [0.05, 0.1, 0.2, 0.3, . . . , 0.9]; 3) Since MNIST is much easier to be classified
compared with CIFAR10 and CIFAR100, we also evaluate the performance of our method on MNIST with CNN
at the density levels {0.01, 0.02, . . . , 0.05}. Each experiment is comprised of two phases. For the experiments
on MLP and CNN, in phase one, we run Algorithm 1 for 20 epochs to find the adversarial winning ticket. The
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Figure 8: Test accuracy on natural and adversarial examples of CNN trained on MNIST. The density varies in
{0.1, 0.3, 0.5, 0.7, 0.9}.

weight γ of the kernel distance in Eqn.(10) is choosen to be 1e − 3. In phase two, we adversarially train the
winning ticket from the original initialization with the cross entropy loss for 100 epochs by using L∞-PGD attack.
The ϵ in PGD attack in both phase one and two is set to be 0.3 and 8/255 in the experiments on MNIST and
CIFAR-10/100, respectively. In both of these two phases, we adopt adopt Adam (Kingma and Ba, 2014) to solve
the corresponding optimization problem. The learning rate is set to be 5e− 4 and 1e− 3 in phase one and phase
two, respectively. The batch size is 64. For the experiments on VGG16, we run phase one for 10 epochs and
phase two for 20 epochs. Other settings such as ϵ are the same as the experiments on MLP and CNN.

Experiments in Introduction For the experimental results given in the introduction section, we adopt the
above MLP network and do nature training. We compare the dynamic preserving abilities of NTT and DNS
in pruning with the pruning rate being 0.02. NTT prunes the network at initialization, while DNS prunes the
network during training. In both NTT and DNS, we prune the network in 20 epochs with batch size being 64.
And then we fine tune the obtained sparse network for 50 epochs.

An Ablation Study To show whether the training dynamics is preserved, instead of only looking at the kernel
distance and target distance, we adopt a technique named network grafting (Gu et al., 2020) to verify whether
dynamics are preserved. The idea is if two networks have same dynamics, then one can be grafted/connected
onto the other at each layer at any epoch of training without significant error increase. We give the result on
MNIST with CNN in Figure 9, where the error increases are very small, especially when the densities are low.
This verifies the claim.

Figure 9: Graft results.

More Results Figure 7(a) and (b) are the statistics of AWT, i.e, the kernel and target distances, in the
procedure of searching masks on MNIST with cnn over density levels of {0.05, 0.1, 0.2, 0.3, . . . , 0.9}. Figure 7(c)
is the adversarial training and test accuracy curves in the training process (phase two). To make the curves
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not too crowded, we omit the curves at the density levels of {0.2, 0.4, 0.6, 0.8, 0.9}. We can see that the target
and kernel distances can decrease quickly in phase one and training dynamic of the winning ticket in phase two
would become closer to the dense network when the density level increases. This is consistent with our theoretical
analysis.

0 20000 40000 60000 80000

Train iterations

0.97

1.00

N
a

t-
a

cc

0 20000 40000 60000 80000

Training iterations

0.95

0.98

A
d

v-
a

cc

AWT0.1 rand0.1 AWT0.3 rand0.3 AWT0.5 rand0.5 AWT0.7 rand0.7 AWT0.9 rand0.9 Dense

Figure 10: Natural and adversarial test accuracy of the models trained from AWT and random structure on
MNIST with CNN. The density varies in {0.1, 0.3, 0.5, 0.7, 0.9}.
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Figure 11: Natural and adversarial test accuracy of the models trained from AWT and random structure on
CIFAR100 with CNN. The density varies in {0.1, 0.3, 0.5, 0.7, 0.9}.

Figure 8 presents the natural and adversarial testing accuracy of CNN trained on MNIST with the density level
varies in {0.1, 0.2, . . . , 0.9}. We can see that when the density level is larger than 0.2, the accuracy is very close
to the dense mode. The reason could be that when the density level is larger than 0.2, the model begins to be
overparameterized. This can also be seen in Figure 10. That is when the density level is larger than 0.2, there is
even no significant difference between the winning ticket an the random structure. That’s why we give the results
with the density level varying in {0.01, 0.02, . . . , 0.05} in the main text.

Figure 11 shows the performance of the models trained on CIFAR100 from our winning ticket and the random
structure. We can see that after training, our winning ticket has significantly higher natural and adversarial test
accuracy than that of the random structure. In this experiment, all the models cannot achieve the comparable
test accuracy on natural examples as ResNet18 reported in the existing studies. The reason is that our model is a
6-layer CNN, whose capacity is much smaller than ResNet18.
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