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ABSTRACT

In this paper, we propose a novel feature guided Gaussian
mixture model (FG-GMM) for image matching, which typ-
ically requires matching two sets of feature points extracted
from the given images. We formulate the problem as esti-
mation of a feature guided mixture of densities: a GMM is
fitted to one point set, such that both the centers and local
features of the Gaussian densities are constrained to coin-
cide with the other point set. The problem is solved under
a unified maximum-likelihood framework together with an it-
erative semi-supervised Expectation-Maximization (EM) al-
gorithm initialized by the confident feature correspondences.
The image transformation is specified in a reproducing ker-
nel Hilbert space and a sparse approximation is adopted to
achieve a fast implementation. Extensive experiments on var-
ious real images show the robustness of our approach, which
consistently outperforms other state-of-the-art methods.

Index Terms— Image matching, feature guided, GMM,
semi-supervised EM

1. INTRODUCTION

Establishing reliable correspondence between two images is
a fundamental problem in computer vision and multimedia,
and it is a critical prerequisite in a wide range of applications
including 3D reconstruction, tracking, super-resolution, con-
tent based image retrieval [1, 2, 3, 4, 5, 6]. In this paper, we
formulate it as a matching problem between two sets of dis-
crete points where each point is an image feature, extracted
by a feature detector, and has a local image descriptor, such
as Scale Invariant Feature Transform (SIFT) [7].

During the last decades, a variety of methods have been
introduced to address the matching problem. A popular strat-
egy is to first construct a set of putative point correspondences
according to a similarity constraint which requires that points
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can only match points with similar descriptors, and then re-
move the false correspondences and estimate the transforma-
tion parameters (either rigid or non-rigid) robustly based on
a geometric constraint which requires that the matches satis-
fy an underlying geometrical requirement [3, 8]. Examples
of this strategy include the hypothesize-and-verify RANSAC
and analogous algorithms [8, 9, 10] which are based on para-
metric models, and smooth motion field interpolation meth-
ods [3, 11, 12, 13] based on non-parametric models. How-
ever, the putative set in the first step typically contains only
a small part of the whole existing true correspondences [14],
and it will be even less for low-quality or small overlapping
images, which may lead to inadequate correspondences for
computing the transformation parameters in the second step.
Therefore, it is of particular advantage to develop a technique
that is able to preserve most of the existing true matches.

Rather than compute the point correspondence and spatial
transformation separately, another popular strategy is to esti-
mate these two variables jointly [15, 16]. These methods typ-
ically involve an iteration process which alternates between
the correspondence and the transformation estimation. The
Iterated Closest Point (ICP) algorithm [17] is one of the best
known point matching approaches. It uses nearest-neighbor
relationships to assign a binary correspondence and then us-
es the estimated correspondences to refine the transforma-
tion. Chui and Rangarajan established a general framework
for non-rigid matching called TPS-RPM [15], which replaces
the nearest point strategy of ICP with soft assignments within
a continuous optimization framework involving deterministic
annealing. In the recent past, the point matching is typically
solved by probabilistic methods [16, 18, 19, 20, 21]. These
methods formulate matching as the estimation of a mixture
of densities using Gaussian mixture models (GMMs), and the
problem is solved within the framework of maximum likeli-
hood and the EM algorithm. The methods mentioned above
generate a correspondence matrix between the original two
feature point sets, and hence do not suffer from missing true
matches. However, the feature points in these methods are
treated as pure spatial coordinates, that is to say, the feature
descriptors are entirely discarded, which may easily lead to
suboptimal solution in case of severely degraded data such as



large outlier percentage. Therefore, it is necessary to incor-
porate the local appearance information of feature points in
the formulation and helps to establish better point correspon-
dences.

In this paper, we propose a novel feature guided Gaussian
mixture model (FG-GMM) to address the problem of robust
image matching. The new formulation possesses the advan-
tages of incorporating local feature information as well as p-
reserving most of the existing true matches. More precisely,
we formulate point matching as the estimation of a feature
guided mixture of densities: a GMM is fitted to one point set,
such that both the centers and local features of the Gaussian
densities are constrained to coincide with the other point set.
The problem is solved under a unified maximum-likelihood
framework together with a semi-supervised EM algorithm ini-
tialized by the confident feature correspondences. The spatial
transformation is modeled in a functional space, called the
reproducing kernel Hilbert space (RKHS) [22], in which the
transformation function has an explicit kernel representation.
In addition, we provide a fast implementation based on sparse
approximation to improve the computational efficiency.

2. METHOD

This section describes the proposed matching algorithm. We
start by introducing the feature guided GMM formulation for
matching feature sets with associated descriptors, and then
give the optimization method based on semi-supervised EM.
Finally, we provide some implementation details.

2.1. Feature Guided Gaussian Mixture Model

Suppose we obtain two sets of features extracted respec-
tively from two given images, e.g. {X ,Sx} and {Y,Sy},
where X = {xn}Nn=1 and Y = {ym}Mm=1 are 2D colum-
n vectors indicating the spatial positions of feature points,
Sx = {S(xn)}Nn=1 and Sy = {S(ym)}Mm=1 are the associat-
ed feature descriptor vectors. We call the two feature sets the
model feature set and the target feature set, respectively. The
goal is to establish accurate correspondences between the t-
wo feature sets and estimate a spatial transformation T which
warps the model features to the target features.

Without considering the associated feature descriptors,
the point matching can be formulated as the estimation of
a mixture of densities: A Gaussian mixture model (GMM)
is fitted to the target points Y , such that the centroids of the
Gaussian densities are constrained to coincide with the trans-
formed model points T (X ) [16, 18, 19]. Let Z = {zm ∈
IINN+1 : m ∈ IINM} be a set of latent variables, with each
variable zm assigning a target point ym to a GMM centroid
T (xn), if zm = n, 1 ≤ n ≤ N , or to an additional outlier
class, if zm = N + 1. The GMM probability density function
then can be defined as

p(ym) =
∑N+1
n=1 P (zm = n)p(ym|zm = n). (1)

In this paper, we generalize the formulation to register fea-
ture sets with associated descriptors. More specifically, let
πmn be the membership probability of the GMM, which is
typically assumed to be equal for all GMM components in the
original formulation, i.e., πmn = 1

N , ∀m ∈ IINM , n ∈ IINN

[16, 19]; instead, we assign its value based on the associated
feature descriptor vectors Sx and Sy. To this end, we first
match Sx and Sy according to a descriptor similarity con-
straint, for example, comparing the distance of the closest
neighbor to that of the second-closest neighbor (we call it dis-
tance ratio) and matching them if the distance ratio is below a
predefined threshold t [7]. Then we assign πmn = τ if S(xn)
is matched to S(ym), where parameter τ , 0 ≤ τ ≤ 1, could
be considered as the confidence of a feature correspondence.
For the rest elements of {πmn}M,N

m=1,n=1, we set them to either
(1 − τ)/(N − 1) or 1/N , so that it satisfies 0 ≤ πmn ≤ 1

together with ∀ m,
∑N
n=1 πmn = 1. Note that the matched

correspondences may be contaminated by some false corre-
spondences and typically contain only a small part of the true
correspondences [14].

For point matching, a popular assumption is the equal
isotropic covariances σ2I on all GMM components and the
uniform distribution 1/a for the outliers [16]. We denote
by θ = {T , σ2, γ} the set of unknown parameters, where
γ ∈ [0, 1] is the percentage of outliers. The mixture model in
Eq. (1) then takes the form

p(ym|θ) = γ
1

a
+ (1− γ)

N∑
n=1

πmnN (ym|T (xn), σ2I)

= γ
1

a
+ (1− γ)

N∑
n=1

πmn
2πσ2

e−
‖ym−T (xn)‖2

2σ2 . (2)

The parameters θ can be estimated by maximizing the
likelihood, or equivalently by minimizing the negative log-
likelihood function

L(θ|Y) = −
∑M
m=1 ln p(ym|θ), (3)

where we have made the i.i.d. data assumption. The corre-
spondence probability between two features {xn, S(xn)} and
{ym, S(ym)} can be defined as the posterior probability of
the GMM centroid given the target point: P (zm = n|ym) =
πmnp(ym|zm = n)/p(ym). The transformation T will be
obtained from the optimal solution θ∗.

2.2. The Semi-Supervised EM Algorithm

The EM algorithm is a technique for learning and inference
in the context of latent variables. It alternates between two
steps: an expectation step (E-step) and a maximization step
(M-step). We follow standard notation [23] and omit some
terms that are independent of θ. Considering the negative
log-likelihood function, i.e., Eq. (3), the complete-data log-



likelihood is then given by

Q(θ,θold) = MP lnσ2 −MP ln(1− γ)− (M −MP) ln γ

+
1

2σ2

M∑
m=1

N∑
n=1

P (zm = n|ym,θold)‖ym − T (xn)‖2, (4)

where MP =
∑M
m=1

∑N
n=1 P (zm = n|ym,θold) ≤M .

E-Step: It aims to estimate the posterior distributions of
the latent variables, i.e., pmn = P (zm = n|ym,θold), by
using the current estimated parameters θold. As we have
part confident feature correspondences obtained based on the
associated descriptors, we consider the semi-supervised EM
[24] rather than the original EM. More specifically, we com-
pute pmn according to the following two rules:

(i) For the target features {ym} with knowing correspon-
dences, we expect them to play a role of anchors
leading the EM iteration to avoid or alleviate getting
trapped into local minima. Thus we set

pmn = πmn, 1 ≤ n ≤ N. (5)

(ii) For the target features {ym} without knowing corre-
spondences, the posterior distribution can be computed
by applying Bayes rule:

pmn =
πmne

− ‖ym−T (xn)‖2

2σ2∑N
k=1 πmke

− ‖ym−T (xk)‖2

2σ2 + 2γπσ2

(1−γ)a

. (6)

M-Step: We compute the revised parameters as: θnew =
arg maxθQ(θ,θold). Taking derivatives of Q(θ) with re-
spect to γ and σ2, and setting them to zero, we obtain

γ = 1−MP/M, (7)

σ2 =

∑M
m=1

∑N
n=1 pmn‖ym − T (xn)‖2

2MP
. (8)

The estimation of T is a complicated procedure, which
will be discussed later. Once the semi-supervised EM con-
verges, we obtain the estimated spatial transformation T . Be-
sides, the feature correspondences can be computed based on
the posterior distribution {pmn}M,N

m=1,n=1. With a predefined
threshold η, we obtain the correspondence set I:

I = {(m,n) : pmn > η,m ∈ IINM , n ∈ IINN}. (9)

In this process, we update pmn associated with the knowing
correspondences one more time by using Eq. (6) rather than
Eq. (5), which would be beneficial if the knowing correspon-
dences contain false matches.

2.3. Estimation of Transformation

We consider the terms of Q(θ) that are related to T , it is es-
timated by minimizing a weighted empirical error Q(T ) =
1

2σ2

∑M
m=1

∑N
n=1 pmn‖ym − T (xn)‖2. This is not tractable

since the feature sets typically suffer from noise and outlier-
s, and the problem will be even big in the non-rigid case as
the solution of T is not unique. Here we consider the slow-
and-smooth model [3], where a smoothness functional φ(T )
is imposed on the transformation to ensure well-posedness.
Thus we obtain an energy function

E(T ) =
1

2σ2

M∑
m=1

N∑
n=1

pmn‖ym − T (xn)‖2 + λφ(T ), (10)

with λ > 0 controlling the trade-off between the two terms.
We define the transformation T as the initial position plus

a displacement function f : T (x) = x + f(x), where f is
modeled by requiring it to lie within a specific functional s-
pace H, namely a vector-valued reproducing kernel Hilbert
space (RKHS) [25] (associated with a particular kernel). The
smoothness functional can then be defined as the square norm,
i.e., φ(T ) = φ(f) = ‖f‖2H. We define H by a matrix-valued
kernel Γ : IR2×IR2 → IR2×2, and a diagonal Gaussian kernel
Γ(xi,xj) = κ(xi,xj) · I = e−β‖xi−xj‖

2 · I is chosen in this
paper. Thus we have the following theorem [16, 3].

Theorem 1. The optimal solution of Eq. (10) is given by

T (x) = x + f(x) = x +
∑N
n=1 Γ(x,xn)cn, (11)

with the coefficient set {cn} determined by a linear system

(d(PT1)Γ + 2λσ2I)C = PTY − d(PT1)X, (12)

where C = (c1, · · · , cN )T, Γ ∈ IRN×N is the so-called
Gram matrix with Γij = κ(xi,xj) = e−β‖xi−xj‖

2

.

The proof of Theorem 1 is similar to that in [16, 3], which
is given in the supplementary material.

Fast Implementation. The algorithm requires at least
O(N3) complexity due to the requirement of solving the lin-
ear system (12), which may cause significant computational
problem in case of large scale feature sets. Consequently, we
adopt a sparse approximation, and randomly pick only a sub-
set of size L input points {x̃l}Ll=1 to have nonzero coefficients
in the expansion of the solution (i.e. Eq. (11)). This fol-
lows [3] who found that this approximation works well and
that simply selecting a random subset of the input points in
this manner, performs no worse than more sophisticated and
time-consuming methods. Thus we seek a solution of form

f(x) =
∑L
l=1 Γ(x, x̃l)cl. (13)

The chosen point set {x̃l}Ll=1 is somewhat analogous to
control points. By using the sparse approximation, the linear



Algorithm 1: The FG-GMM algorithm
Input: Image pair, parameters t, τ , λ, η, β, L
Output: Correspondence set I

1 Extract two feature sets using SIFT: {X ,Sx}, {Y,Sy};
2 Match the two feature sets using a descriptor similarity

constraint together with a distance ratio threshold t;
3 Assign the membership probability πmn;
4 Set a to the volume of the output space;
5 Construct matrix Γ or E using definition of Γ;
6 Initialize C = 0, γ, pmn = πmn, σ2 (using Eq. (8));
7 repeat
8 E-step:
9 Update P by Eqs. (5) and (6);

10 M-step:
11 Update C based on linear system (12) or (14);
12 Update σ2 and γ by Eqs. (8) and (7);
13 until Q converges;
14 Correspondence set I is determined by Eq. (9).

system (12) becomes

(UTd(PT1)U + 2λσ2Γs)Cs = UTPTY −UTd(PT1)X,
(14)

where the coefficient matrix Cs = (c1, · · · , cL)T ∈ IRL×2,
Γ ∈ IRL×L with Γij = κ(x̃i, x̃j) = e−β‖x̃i−x̃j‖

2

, and
U ∈ IRN×L with Uij = κ(xi, x̃j) = e−β‖xi−x̃j‖

2

. The
derivation of Eq. (14) is similar as that of Eq. (12), please see
the supplementary material for further details. By using this
sparse approximation, the time complexity for solving the lin-
ear system is reduced from O(N3) to O(L2N).

We summarize our matching algorithm in Algorithm 1.

2.4. Implementation Details

The performance of feature matching algorithms depends,
typically, on the coordinate system in which feature points
are expressed. We use data normalization to control for this.
More specifically, we perform a linear re-scaling so that the
spatial positions of the two feature point sets both have zero
mean and unit variance. Note that the constant a of the uni-
form distribution in Eq. (2) is the area of the second image
(i.e., the range of ym), and it should be set according to the
data normalization.
Parameter setting. There are mainly seven parameters in our
method: t, τ , λ, η, γ, β and L. Parameter t is a distance ratio
threshold used to establish the initial correspondences based
on feature descriptors. Parameter τ is used to assign the mem-
bership probability πmn which is the confidence of a knowing
correspondence. Parameter λ controls the influence of the lo-
cal geometrical constraint on the transformation T . Parameter
η is a threshold, which is used for deciding the correctness of
a correspondence. Parameter γ reflects our initial assumption
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Fig. 1. Examples of images in the dataset [26].

on the amount of inliers in the correspondence sets. Parame-
ters β determines how wide the range of interaction between
feature points. Parameter L is the required number of control
points for sparse approximation. We set t = 0.8, τ = 0.9,
λ = 3, η = 0.5, γ = 0.9, β = 0.1 and L = 15, throughout
our experiments.

3. EXPERIMENTAL RESULTS

We test the performance of our proposed algorithm on real
images. The experiments are performed on a laptop with 2.5-
GHz Intel Core CPU, 8-GB memory, and MATLAB code.

3.1. Datasets and Settings

To test the capability of handling non-rigid deformation, we
conduct experiments on several image pairs involving de-
formable objects, which is frequently encountered in image
retrieval. We further test our method on the dataset of Miko-
lajczyk et al. [26], which contains 40 image pairs either of
planar scenes or taken by camera in a fixed position during
acquisition. The images, therefore, always obey homography.
The ground truth homographies are supplied by the dataset.
The dataset contains eight folders, in which the images in-
volve viewpoint change, scale and rotation, image blur, light
change as well as JPEG compression. Some examples are
given in Fig. 1. To determine the match correctness on this
dataset, we use the same overlap error criterion as in [3].

The open source VLFEAT toolbox [27] is used to deter-
mine the putative correspondences of SIFT [7]. The experi-
mental results are evaluated by precision and the number of
identified correct matches, where the precision is defined as
the ratio of the identified correct matches number and the p-
reserved correspondence number. We compare our FG-GMM
algorithm with other four state-of-the art matching methods,
such as RANSAC [9], ICF [11], VFC [3] and CPD [16]. We
implement ICF and tune all parameters accordingly to find



Fig. 2. Results of our FG-GMM on three typical image pairs (e.g.,
T-shirt, Peacock and Fox) involving deformable objects. The pre-
cisions and identified correct match numbers are (97.85%, 288),
(99.07%, 107), and (99.29%, 139). Blue and red lines/arrows indi-
cate correct and false matches, respectively. The right column is the
corresponding motion fields, where the head and tail of each arrow
correspond to the positions of feature points in two images.

optimal settings. The other three methods are implemented
by using publicly available codes. Throughout all the experi-
ments, the parameters of five methods are all fixed.

3.2. Results on Non-Rigid Images

We first give some intuitive performance of our proposed FG-
GMM on three typical image pairs involving deformable ob-
jects, as shown in Fig. 2. The first pair consists of scenes of
two different deformations with illumination changes of a T-
shirt. In the second pair, we first add a regular grid on it, and
then warp it and take two views with different deformation-
s. The third pair is two frames extracted from a video. Such
matching problem is frequently encountered in near-duplicate
image retrieval. From the results, we see that our FG-GMM
is able to establish accurate feature matching, and the pre-
cisions are 97.85%, 99.07% and 99.29%, respectively. The
motion fields related to the three image pairs are provided in
the right column of Fig. 2, we see that the degree of the non-
rigid deformation is quite large, where different parts of the
scenes have different motion manners. However, the variation
of the motion field is slow-and-smooth, which guarantees our
method working well in such case.

To demonstrate the advantages of our method, we report
the results of other four state-of-the-art methods, as shown in
Table 1. Clearly, our FG-GMM has consistently better preci-
sions and can identify much more true matches. RANSAC
has satisfying precisions, as it can identify a majority of

Table 1. Comparison of precisions and preserved correct match
numbers on image pairs involving deformable objects.

T-shirt Peacock Fox

RANSAC [9] (89.21%, 124) (96.61%, 57) (97.33%, 73)
ICF [11] (95.00%, 76) (97.67%, 42) (98.70%, 76)
VFC [3] (96.18%, 126) (98.44%, 63) (98.94%, 93)
CPD [16] (90.00%, 45) (96.92%, 63) (95.31%, 61)
FG-GMM (97.85%, 288) (99.07%, 107) (99.29%, 139)

the putative correspondences which satisfy a geometric con-
straint. However, the geometric constraint is based on a para-
metric model (e.g., homography in our experiments) which
may not approximate the real non-rigid deformation well if
the deformation is complex. This can be seen from the T-shirt
pair with larger degree of deformation, in which RANSAC
has much lower precision. By contrast, the precisions of the
two non-parametric based methods ICF and VFC are better.
Nevertheless, these three methods operate on a set of putative
correspondences, which suffer from missing true correspon-
dences and hence, the numbers of identified correct matches
are much smaller compared to our FG-GMM1. For the CPD
method, we found in our evaluation that it completely failed
on all the three pairs (here we omit the detail results for clari-
ty), which can be attributed to the large outlier percentages in
the feature set. Note that CPD only uses the spatial positions
of feature points; its poor results demonstrate the significance
of using local appearance information during image match-
ing. We also test CPD on two feature sets obtained from the
putative sets as those in RANSAC, ICF and VFC, and report
the results in Table 1. We see that the results are still not
that good compared to VFC; here we give an explanation as
follows: VFC only needs to remove false matches from a pu-
tative set, it has initial correspondence information compared
to CPD, which is beneficial for solving the matching problem.

3.3. Results on An Image Dataset

We next conduct experiments on the dataset of Mikolajczyk et
al. [26]. The statistics of the precision and identified correc-
t match number for RANSAC, ICF, VFC and our FG-GMM
are given in Fig. 3. Here we do not report the results of CPD,
as it again fails on most of the image pairs. From the results,
we see that our FG-GMM has the best average precision (i.e.,
95.84%) and largest average identified correct match num-
ber (i.e., 920.15), followed by VFC and RANSAC. Note that
RANSAC works well on this dataset, since the image trans-
formation satisfies a parametric model such as homography.

We also test the fast version of our FG-GMM on this
dataset. The average number of extracted SIFT features for

1To keep more true matches, a possible solution is to enlarge the size of
the putative set. But this will rapidly reduce the correct match percentage in
the putative set, and hence badly degrades the matching performance [14].
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Fig. 3. Precision (left) and identified correct match number (right)
of RANSAC [9], ICF [11], VFC [3] and our FG-GMM with respect
to the cumulative distribution on the dataset of Mikolajczyk et al.
[26].

an image is about 2630, which should be a large scale prob-
lem for image matching, and hence it is desirable to seek an
efficient implementation. The average precision and identi-
fied correct match number of our fast FG-GMM are about
95.21% and 922.34, which are similar to the results of the o-
riginal FG-GMM. The average run times of the original and
fast FG-GMM are about 34.23s and 16.35s per image pair.
We see that the fast implementation can significantly reduce
the computational complexity without sacrifice in accuracy.

4. CONCLUSION

In this paper, we presented a feature guided Gaussian mixture
model (FG-GMM) for robust image matching. A key char-
acteristic of our approach is that it can preserve much more
true feature matches and can incorporate local feature infor-
mation during matching. The semi-supervised EM algorithm
is introduced to solve the problem which is formulated as a
maximum-likelihood estimation. We also provide an efficien-
t implementation of our method to reduce the computational
complexity without significantly reducing the quality of the
matching. Experiments on public available dataset demon-
strate that our approach yields superior results to those of the
state-of-the-art methods, and it will be beneficial for multime-
dia applications such as content based vedio/image retrieval.
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