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Abstract Many man-made objects have intrinsic sym-

metries and often Manhattan structure. By assuming

an orthographic or weak perspective projection model,

this paper addresses the estimation of 3D structures

and camera projection using symmetry and/or Man-

hattan structure cues, for the two cases when the in-

put is a single image or multiple images from the same

category, e.g. multiple different cars from various view-

points. More specifically, analysis on the single image

case shows that Manhattan alone is sufficient to recover

the camera projection and then the 3D structure can

be reconstructed uniquely by exploiting symmetry. But

Manhattan structure can be hard to observe from a

single image due to occlusion. Hence, we extend to the

multiple image case which can also exploit symmetry

but does not require Manhattan structure. We propose
novel structure from motion methods for both rigid and

non-rigid object deformations, which exploit symmetry

and use multiple images from the same object category

as input. We perform experiments on the Pascal3D+

dataset with either human labeled 2D keypoints or with

2D keypoints localized from a convolutional neural net-

work. The results show that our methods which exploit

symmetry significantly outperform the baseline meth-

ods.
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Fig. 1 Left Panel: Illustration of symmetry and Manhattan
structure. The car has a bilateral symmetry with respect to
the plane in red. There are three Manhattan axes. The first is
normal to the symmetry plane of the car (e.g. from left wheel
to right wheel). The second is from the front to the back of
the car (e.g. back left wheel to front right wheel) while the
third is in the vertical direction. Right Panel: Illustration of
the 3 Manhattan directions on a real aeroplane image, shown
by Red, Green, Blue lines. These 3 Manhattan directions can
be obtained directly from the labeled keypoints.

1 Introduction

Many objects, especially those made by humans, have

intrinsic symmetries [25, 39] and Manhattan structure

(meaning that 3 perpendicular axes are inferable from

the object [10, 11, 14]). These include cars and aero-

planes, see Fig 1. The purpose of this paper is to inves-

tigate the benefits of using symmetry and/or Manhat-

tan constraints to estimate the 3D structures of objects

from one or more images. As a key task in computer

vision, numerous studies have been conducted on es-

timating the 3D shapes of objects from multiple im-

ages [1, 4, 12, 13, 15, 16, 18, 22, 23, 43, 44, 48]. There is

also a long history of research on the use of symme-

try [17,25,27,29,35,41,45] and a growing body of work

on Manhattan world [10,11,14]. There is, however, little

work that combines these cues.

This paper was inspired by recent work [26, 46],

which estimates the 3D structure of an object class us-

ing structure from motion (SfM), taking multiple intra-

class instances as input, e.g. different cars from vari-
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ous viewpoints, but which did not exploit symmetry or

Manhattan constraints. Following [26, 46], we use the

2D positions of keypoints as input to estimate the 3D

structure and the camera projection, leaving the de-

tection of the 2D keypoints to methods such as [9]. In

this paper, different combinations of the three cues, i.e.

symmetry, Manhattan and multiple images, are inves-

tigated. We propose four new algorithms for estimating

3D structure, assuming orthographic or weak perspec-

tive (i.e. orthographic projection plus scale) projection.

These include an algorithm for single image reconstruc-

tion using both symmetry and Manhattan constraints,

an algorithm for multiple image reconstruction using

symmetry for objects with rigid deformations, and two

for multiple image reconstruction exploiting symme-

try for objects with non-rigid deformations. We exper-

imented with using Manhattan, in addition to symme-

try, for multiple images but found it gave negligible

improvement. Note that rigidity or non-rigidity in this

paper means the deformation between the objects from

the same category, e.g. between the sedan and SUV

cars, is assumed to be rigid or non-rigid, but the ob-

jects themselves are rigid and symmetric.

We start by explaining our core strategy for exploit-

ing symmetry assuming all keypoints are observed. We

exploit symmetry by a coordinate rotation which en-

ables us to decouple the estimation of the 3D structure

so that different components of the 3D structure can

be estimated separately. This enables us to adopt the

standard factorization methods for rigid and non-rigid

motion to take advantage of symmetry. Specifically for

the rigid case, it enables us to reduce the problem to ap-

plying Singular Value Decomposition (SVD) twice, to
estimate different 3D structure components, and then

to identify and to combine these estimates while dealing

with the ambiguities resulting from SVD. The same co-

ordinate rotation can be applied to estimating 3D struc-

ture from single images or for multiple images for both

rigid and non-rigid deformations. This strategy explains

the close relationships between earlier versions of this

work which appeared in two conference papers [15,16].

Next, we proceed to the single image reconstruction

case. This exploits both the symmetry and Manhattan

constraints, see Fig. 1. We show that Manhattan alone

is sufficient to estimate the camera projection (i.e. the

viewpoint of the object). Then symmetry is used to

estimate the 3D structure by exploiting the change of

coordinates mentioned in the previous paragraph. We

illustrate reconstruction from single images using aero-

planes from Pascal3D+, see the experimental section.

But we found it hard to estimate the Manhattan axes

from a single image, due to occlusion of keypoints, so

we only report results for a limited number of cases.

As it is impractical to assume all the keypoints are

visible (as assumed in the single image reconstruction),

we move on to exploit multiple-images to deal with oc-

clusions and obtain better estimates of the 3D struc-

ture. We formulate the problem in terms of energy min-

imization with symmetry constraints included. The en-

ergy includes missing/latent variables to deal with un-

observed keypoints due to occlusion. These complica-

tions mean that we cannot directly apply factorization

methods(e.g., SVD as in previous work [28, 42]) to di-

rectly minimize the energy function. Instead, we use

coordinate descent but, in order to give a good initial-

ization, we define a surrogate energy function which ex-

ploits symmetry, by grouping the keypoints into sym-

metric keypoint pairs, and assumes that the missing

data are known (e.g. initialized by another process, or

estimated iteratively like EM). This procedure applies

to all of our Structure from Motion (SfM) methods,

although they differ in how to estimate good initializa-

tions for 3D structure and viewpoint.

After that, we discuss the details of our symmet-

ric SfM method assuming rigid deformation. The input

consists of different intra-class object instances, seen

from a variety of viewpoints, and we assume rigid defor-

mation between different intra-class instances. Combin-

ing these estimates requires analyzing the ambiguities

inherent in SVD and specifying algorithms to resolve

them. We call this method Sym-RSfM. It is tested and

compared to baseline methods, which do not exploit

symmetry, on benchmarked datasets.

We extend our approach to the non-rigid case and

propose two symmetric non-rigid SfM methods making

the standard assumption that the 3D structures can

be represented as linear combinations of basis function

(where the coefficients vary for different objects). The

first approach is a direct factorization method, which

extends the prior-free approach [12, 13] and exploits

symmetry by a coordinate transformation to decom-

pose the 3D structure into independent components

while addressing the complex ambiguities which arise

in factorization approaches to the non-rigid structure

from motion (and which are modified due to our use of

symmetry). Our second approach is an extension of [44]

which uses a Gaussian prior on the coefficients of the

deformation bases and an EM algorithms (note that

recent work [2] showed that the prior was not neces-

sary, thereby motivating the prior-free methods). We

refer to these two methods as Sym-PriorFree and Sym-

EM-PPCA respectively. In the experimental section, we

compare their performance to the corresponding base-
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Fig. 2 The overview of this paper. The proposed four methods can be categorized into two parts, i.e. , i) the single image
reconstruction method which exploits the symmetry and Manhattan properties, this method is based on geometry and does
not deal with occlusions; ii) the reconstruction methods which exploits multiple images in an optimization framework, which
make use of symmetry property and is able to perform occlusion reasoning. Specifically, we propose three novel methods for
multiple-image reconstruction, i.e. , Sym-RSfM (Rigid), Sym-PriorFree (Non-Rigid), and Sym-EM-PPCA (Non-Rigid). All of
the three methods are related to the energy minimization problem with occluded keypoints introduced in Sect. 5, and Sym-
EM-PPCA also uses the results from Sym-RSfM as initialization for further non-rigid updates. As an extension of Sym-RSfM,
Sym-PriorFree performs direct factorization with non-rigid deformation, which differs with Sym-EM-PPCA on whether to use
a prior to deal with the non-rigid ambiguities.

lines, i.e. [12, 13] and [44] respectively, using the pro-

jection models specified in the baselines.

Our main contributions are as follows. We show the

symmetry can be used, by exploiting a coordinate trans-

formation, to decompose the estimation of the 3D struc-

ture into different components which can be addressed

independently (subject to complications caused by un-

observed keypoints and factorization, or gauge ambi-

guities). We also show that Manhattan constraints are
sufficient to estimate the camera projection, provided

that sufficient keypoints can be observed (which is rare

in practice). This enables us to specify four new algo-

rithms for estimating 3D structure and camera param-

eters. Specifically, as shown in Fig. 2, the four novel

algorithms are:

– Single image 3D structure reconstruction, as detailed

in Sect. 4, which exploits both symmetry and Man-

hattan properties of a single object.

– Sym-RSfM (rigid), which takes multiple images as

input and assumes rigid deformations, with symme-

try constraints. This method is mainly discussed in

Sect. 6, which also makes use of the content intro-

duced in Sect. 5 for occlusion reasoning.

– Sym-PriorFree (non-rigid), which performs direct

matrix factorization on multiple images with non-

rigid deformation and symmetry constraint, to ini-

tialize a coordinate descent algorithm. We detail

this method in Sect. 7, which also uses Sect. 5 to

recover the occlusions.

– Sym-EM-PPCA (non-rigid), which imposes symmet-

ric constraints on both the 3D structure and defor-

mation bases. Sym-RSfM is used to initialize Sym-

EM-PPCA to impose hard symmetric constraints on

the 3D structure. We discuss this method in Sect. 8,

where the initialization of this method is obtained

by Sym-RSfM (i.e. , Sect. 5 and Sect. 7).

We provide detailed experiments showing the per-

formance of our algorithms on objects in the Pascal3D+

dataset [47]. In all cases, we compare the performance

of our methods, which exploit symmetry, to the base-

lines which do not. Note that lack of commonality be-

tween the tasks, and the baselines (which use a variety

of camera projection models), means that it is hard to

give precise fair comparisons between all our methods

(so we concentrate on their performance relative to the

baselines).

Our experiments are done in two settings. Firstly,

we use the ground truth 2D annotations specified in

Pascal3D+. We note that the annotations only include

keypoints which are observable (i.e. the annotators did

not try to estimate the positions of the occluded key-

points). We also showed the robustness of our methods

to location errors in the keypoint locations, by adding

Gaussian noise, and we report these results in the sup-

plementary material. Secondly, we applied our method
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to real images using a stacked hourglass deep network

[36] to estimate the keypoint positions (and identify-

ing their semantic meaning, e.g. left front wheel) as in-

put to our algorithms. These results are generally very

good, perhaps because the stacked hourglass network

outputs good estimates for the positions of the missing

(i.e. occluded) keypoints.

We note that our algorithms were first presented in

two separate conference papers [15,16], which reported

results on Pascal3D+. The novelties of this paper are

to unify the work in the two papers by presenting them

in a way which simplifies them and explains the com-

mon ideas they rely on (e.g. the change of coordinates,

and the decomposition of the 3D structure into differ-

ent components). In addition, we have added the exper-

iments on real images, using the stacked hourglass deep

network, to show that our approach can be applied to

the real-world problem.

The rest of the paper is organized as follows. Firstly,

we review related work in Sect. 2. Next, Sect. 3 intro-

duces our main ideas for exploiting symmetry without

considering missing keypoints. Following this idea, we

give details of our single image reconstruction in Sect.

4. We overview our SfM methods for dealing with occlu-

sions in Sect. 5, where we define the full energy function

(with missing data) and the surrogate energy function

(without missing data or with missing data initialized).

Then, we give details of the three proposed symmet-

ric SfM methods, i.e. Sym-RSfM, Sym-PriorFree, and

Sym-EM-PPCA, in Sects. 6 - 8, respectively. We note

that Sym-PriorFree (non-rigid SfM) is a direct exten-

sion of Sym-RSfM (rigid SfM), and Sym-EM-PPCA

(non-rigid SfM) is an indirect extension using Sym-

RSfM as initialization. Followed this, we perform exper-

iments on Pascal3D+ with manually labeled keypoints

and keypoints localized by a stacked hourglass network

in Sects. 9 and 10, respectively. Finally, we give our

conclusions in Sect. 11.

2 Related Works

Symmetry has been studied in computer vision for sev-

eral decades. For example, symmetry has been used as

a cue in depth recovery [17,27,35] as well as for recog-

nizing symmetric objects [45]. Grossmann and Santos-

Victor have utilized various geometric clues, such as

planarity, orthogonality, parallelism, and symmetry, for

3D scene reconstruction [20,21], where the camera rota-

tion matrix was precomputed by vanishing points [19].

Recently, researchers have applied symmetry to scene

reconstruction [25], and 3D mesh reconstruction with

occlusion [41]. In addition, symmetry, incorporated with

planarity and a compactness prior, has also been stud-

ied to reconstruct structures defined by 3D keypoints

[29]. By contrast, the Manhattan world assumption was

developed originally for scenes [10, 11, 14], where the

authors assumed visual scenes are based on a Manhat-

tan 3D grid which provides 3 perpendicular axis con-

straints. Both symmetry and Manhattan can be straight-

forwardly combined, and adapted to 3D object recon-

struction, particularly for man-made objects.

The estimation of 3D structure from multiple im-

ages is one of the most active research areas in com-

puter vision. Classic structure from motion (SfM) for

rigid deformation builds on matrix factorization meth-

ods [28, 42], where rigid SfM with missing keypoints

was also studied in [33]. Then, more general non-rigid

deformation [30–32] was considered, and the rigid SfM

in [28, 42] was extended to non-rigid case by Bregler

et al. [7]. Non-rigid SfM was shown to have ambigui-

ties [48] and various non-rigid SfM methods were pro-

posed using priors on the non-rigid deformations [3, 4,

18, 37, 44, 48]. Gotardo and Martinez proposed a Col-

umn Space Fitting (CSF) method for rank-r matrix

factorization and applied it to SfM with smooth time-

trajectories assumption [18]. A more general framework

for rank-r matrix factorization was proposed by Hong

and Fitzgibbon [24], which contained the CSF method

as a special case1. More recently, it has been proved

that the ambiguities in non-rigid SfM do not affect the

estimated 3D structure, [2] which leads to prior free

matrix factorization methods [12,13].

Researchers have used SfM methods for category-

specific object reconstruction, e.g. estimating the struc-

ture of cars from images of different cars under various

viewing conditions [26, 46], where the data was aug-

mented by symmetry in [26] (i.e. left-right flipping),

but these did not exploit symmetry or Manhattan in

their reconstruction algorithm. We point out that rep-

etition patterns have recently been incorporated into

SfM for urban facades reconstruction in [8], but this

work focused mainly on repetition detection and regis-

tration.

3 Exploiting Symmetry to Estimate 3D

Structure

This section specifies the basic set up of our approach

and, in particular, how we model and exploit symmetry.

In the following sections we will apply these basic ideas

1 However, the general framework in [24] cannot be used
to SfM directly, because it did not constrain that all the key-
points within the same frame should have the same transla-
tion. Instead, [24] focused on better optimization of rank-r
matrix factorization and better runtime.
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to cases where only a single image is available (Sect.

4), multiple images are available with rigid deforma-

tion among the objects (Sect. 6), and multiple images

are available with non-rigid deformation among the ob-

jects (Sects. 7 and 8). In this paper, objects are repre-

sented by keypoints. For simplicity of exposition, this

section assumes that all the keypoints of the objects

are observed (i.e. without occlusion) and we will refer

to the following sections for how we deal with miss-

ing/occluded keypoints.

In this paper, we group keypoints into keypoint pairs

and use a superscript † to denote symmetry, i.e. Y and

Y † are the 2D projections of symmetric keypoint pairs,

where we use Italic letter (e.g. Y ) to denote a matrix for

one image. Blackboard letter (e.g. Y) is used for vector-

izing a matrix (e.g. Y = vec(Y )). Bold letter (e.g. Y)

denote a matrix for stacking multiple images. Finally,

we use Calligraphic letter (e.g. A) to represent matrix

(row/column) manipulation operator.

We organize an object consisting of 2P keypoints as

P keypoint-pairs. Without loss of generality, we assume

that the object is symmetric along the x-axis in the

world coordinates (as we can always rotate the world

coordinates). A keypoint pair consists of two points Sp =

[xp, yp, zp]> and S†p = [−xp, yp, zp]. The object is repre-

sented by S, S† ∈ R3×P , consisting of the set {(Sp, S
†
p) :

p = 1, ..., P} ∈ R3×2P . S and S† are related by S† =

AS, whereA is the matrix operatorA = diag([−1, 1, 1]).

We will use Sx = {xp : p = 1, ..., P} ∈ R1×P and

Syz = {(yp; zp) : p = 1, ..., P} ∈ R2×P to represent

the x-components and the y, z-components respectively.

Note that knowing Sx and Syz is equivalent to knowing

the 3D structure S, S†.

Let Y, Y † ∈ R2×P be the observed 2D coordinates

of all the P symmetric pairs. We assume orthographic

projection which implies that:

Y = RS, Y † = RS†, (1)

where R ∈ R2×3 is the camera projection matrix. We

eliminate translation by centralizing the 2D keypoints.

In order to exploit symmetry between the keypoint-

pairs, we perform a change of coordinates from Y, Y †

to L, M by:

L =
Y − Y †

2
M =

Y + Y †

2
. (2)

Hence L represents the difference between the projec-

tions of keypoint pairs, while M represents the sum of

their projections.

This change of coordinates decouples the dependence

of the projections into a term L which depends only on

the x-coordinates of the keypoints and a term M which

depends only on their y, z coordinates. More specifically,

L depends only on Sx while M depends only on Syz.

Moreover, the projection matrix R can be decomposed

into two terms R1 ∈ R2×1 and R2 ∈ R2×2, which rep-

resent the first column and second-third double-column

of R, respectively:

R = [R1, R2], (3)

so that we obtain two separate projections:

L = R1Sx, M = R2Syz. (4)

For the single image case, we can use Eq. (4) to solve

for Sx and Syz provided the rotation R is known. In

Sect. 4 we first describe how the Manhattan assumption

can be used to solve for R and then show how Sx and

Syz can be computed using Eq. (4).

Next we consider the case of estimating the object

structure from multiple views n = 1, ..., N . We repre-

sent the object by S = {Sn : n = 1, ..., N} ∈ R3N×P

and S† = {S†n : n = 1, ..., N} ∈ R3N×P , where the

symmetry relation S†n = ASn applies for all n. For

objects with rigid deformation, the structure is fixed

(i.e. all Sn are identical only up to scales and rota-

tions). For objects with non-rigid deformation, we as-

sume that the Sn, S
†
n can be expressed as a linear com-

bination of unknown basis functions. We use the same

orthographic projection as Eq. (1) to express the ob-

servations Y, Y† ∈ R2N×P in terms of the projections

R = {Rn : n = 1, ..., N} ∈ R2N×3N and the 3D struc-

ture:

Y = RS, Y† = RS†. (5)

As before, we perform the change of coordinates and
decouple the projections into terms that depend on the

x and yz-components of the 3D structure:

L =
Y −Y†

2
= R1Sx, M =

Y + Y†

2
= R2Syz, (6)

where R1 = {R1
n : n = 1, ..., N} ∈ R2N×N consists

of the first column of every Rn, R2 = {R2
n : n =

1, ..., N} ∈ R2N×2N consists of the second-third double-

column of every Rn, and Rn = [R1
n, R

2
n].

Following the standard structure from motion for-

mulations, we seek to estimate the 3D structure by us-

ing a least squares energy function to minimize:

Q(S,R) = ||Y −RS||22 + ||Y† −RS†||22. (7)

This consists of the sum of two energy terms. Standard

factorization techniques, e.g., singular value decompo-

sition (SVD), could be applied to minimize each energy

term separately. But this is problematic because the un-

knowns in both terms are coupled, i.e. they contain the
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same R and S† = AS, therefore leading impossibility

to minimize each energy term separately.

Instead, we use the change of coordinates and re-

express the energy function in terms of two energy terms

which are functions of different/decoupled variables fol-

lowing Eq. (6):

Q(S,R) = ||L−R1Sx||22 + ||M−R2Syz||22. (8)

For the rigid case, this enables us to use SVD to solve

energy term separately to estimate R1,Sx and R2,Syz.

For the non-rigid case, it enables us to extend the

factorizable prior-free methods of [12,13]. These meth-

ods require that the objects are represented in terms of

a linear combination of bases:

Y = RS and S = Vz, RR> = I, (9)

where V are the bases and z are the coefficients. The

bases are fixed, but the coefficients change for different

viewpoints.

But the factorization approaches also involve gauge

ambiguities which must be identified and addressed. In

classic structure from motion, singular value decompo-

sition specifies the solution R,S up to an ambiguity

R← RA1 and S← A−11 S where A is an invertible ma-

trix. But this ambiguity A is restricted to be a rotation

matrix provided the camera projection is orthogonal,

hence it is only a “gauge freedom” [34], corresponding

to a choice of coordinate system.

For the non-rigid case, the gauge ambiguities are

more complicated. Eq. (9) introduces additional am-

biguities of the non-rigid SfM between the deforma-

tion bases V and their coefficients z [2]. Specifically,

let A2 be another invertible matrix, and let w lie in

the null space of the projected deformation bases RV,

then z ← A2z and V ← VA−12 , or z ← z + αw will

not change the value of RVz. This motivated [44] to

impose a Gaussian prior on the coefficient z in order to

eliminate the ambiguities. But, as proved in [2] these

ambiguities are also gauge freedoms, i.e. they do not

affect the estimate of the 3D structure. This proof facil-

itated prior-free matrix factorization methods for non-

rigid SfM [12,13].

Our symmetric formulations alter these gauge am-

biguities. For the rigid case, see Sect 6, we identify the

ambiguities and specify strategies to deal with them.

For the non-rigid case, we specify two algorithms which

exploit symmetry. The first one in Sect. 7 is a prior-free

method based on [12, 13] which treats them as gauge

ambiguities. Sect. 8 describe the second one which fol-

lows [44] by using a prior to remove the ambiguities.

There remains, however, the serious limitation that

several keypoints will be missing due to occlusion. This

requires treating the missing keypoints as hidden vari-

ables and determining strategies to initialize and up-

date them. We leave the details of this to Sect. 5.

4 3D Reconstruction from a Single Image

In this section, we describe how to reconstruct the 3D

structure of an object from a single image using its sym-

metry and Manhattan properties. We first show how

to exploit symmetry to estimate the 3D structure if

the camera projection is known. Then we describe how

the camera projection can be estimated by using the

Manhattan structure, which is sufficient to determine

the camera projection up to sign ambiguities (e.g. we

cannot distinguish between front-to-back and back-to-

front directions). We assume orthographic projection

and estimate the 3D structure only for the keypoint

pairs which are detected.

4.1 Estimate 3D Structure Exploiting Symmetry with

Known Camera Projection

Let Y, Y † ∈ R2×P be the observed 2D coordinates of

all the P symmetric pairs, then orthographic projec-

tion implies Y = RS, Y † = RS†. We represent the

camera projection by R = [R1, R2], where:

R1 =

[
r11
r21

]
, R2 =

[
r12, r13
r22, r23

]
. (10)

We change the coordinates to L = Y−Y †
2 ,M = Y+Y †

2

and obtain:

L =

[
r11x1, ..., r11xP
r21x1, ..., r21xP

]
, (11)

M =

[
r12y1 + r13z1, ..., r12yP + r13zP
r22y1 + r23z1, ..., r22yP + r23zP

]
. (12)

We re-express this as:

L = R1Sx, M = R2Syz, (13)

where Sx = [x1, ...., xP ] and Syz =

[
y1, ..., yP
z1, ..., zP

]
.

If the rotation matrix R is known, then we can

solve Eqs. (11) and (12) to estimate the components

(xp, yp, zp) of all the points Sp and hence, recover the

3D structure. Observe that we have only just enough

equations to solve for the (yp, zp) uniquely. On the other

hand, xp is over-determined due to symmetry. We also

note that the problem (i.e. recovering the 3D struc-

ture with known projection R) is ill-posed if we do not

exploit symmetry, i.e. it involves inverting a 2× 3 pro-

jection matrix.
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4.2 Estimate Camera Projection with Manhattan

Property

This section shows that using Manhattan property alone

is sufficient to recover the projection matrix under an

orthographic camera.

The Manhattan assumption is that the objects in

the image possess a natural Cartesian coordinate sys-

tem where three perpendicular orientations can be in-

ferred [11]. We say that the object which satisfies the

Manhattan assumption has Manhattan properties. This

commonly exists in man-made objects. An example is

shown in Fig. 1 (Right), where left wing → right wing,

nose→ tail, and top rudder→ bottom rudder are three

Manhattan directions. In mathematical terms, the Man-

hattan assumptions means that we can identify six key-

points Sa, Sb, Sc, Sd, Se, Sf such that the three vectors

Sa−Sb, Sc−Sd, Se−Sf are orthogonal and point along

the main axes of the object. Intuitively, Manhattan

properties allow us to extract 3D information from 2D

images. In the following, we will show mathematically

that the Manhattan properties can be used for estimat-

ing the viewpoint of a 2D image under an orthographic

camera.

Consider a single Manhattan axis specified by 3D

points Sa and Sb. Without loss of generality, assume

that these points are along the x-axis, i.e. Sa − Sb =

[∆x, 0, 0]>, where ∆x is the distance between the key-

points. It follows from the projection that:

Ya − Yb = R(Sa − Sb) =

[
r11∆x

r21∆x

]
. (14)

Eliminating ∆x by division, yields the constraint:

r11/r21 = (y1a − y1b )/(y2a − y2b ), (15)

where (y1a, y
2
a) and (y1b , y

2
b ) are the components of Ya and

Yb, respectively. We obtain similar constraints by using

Manhattan axes in the y, z-axes, e.g. assume Sc, Sd are

along the y-axis and Se, Sf are along the z-axis. Defin-

ing µ1 = r11/r21, µ2 = r12/r22, µ3 = r13/r23 yields:

µ1 = r11/r21 = (y1a − y1b )/(y2a − y2b ),

µ2 = r12/r22 = (y1c − y1d)/(y2c − y2d),

µ3 = r13/r23 = (y1e − y1f )/(y2e − y2f ). (16)

Now we recall that the orthogonality of R, i.e. RR> =

I, which implies:

r211 + r212 + r213 = 1, r221 + r222 + r223 = 1,

r11r21 + r12r22 + r13r23 = 0. (17)

Substituting r11, r12, r13 using Eq. (16) gives the fol-

lowing linear equations for r21, r22, r23: 1, 1, 1

µ2
1, µ

2
2, µ

2
3

µ1, µ2, µ3

r221r222
r223

 =

1

1

0

 . (18)

These equations can be solved for the unknowns r221,

r222 and r223 provided the coefficient matrix (above) is

invertible (i.e. has full rank). This requires that (µ1 −
µ2)(µ2 − µ3)(µ3 − µ1) 6= 0. Because µ1, µ2, µ3 are the

directions (more precisely, the slopes) of the projected

Manhattan axes in 2D space, this prerequisite is vio-

lated only in a very special case when the camera op-

tical axis and two Manhattan directions are co-planar

(which projects the two Manhattan directions into one

same line).

Note that there are sign ambiguities for solving r21
r22, r23 from r221, r

2
22, r

2
23. But these ambiguities do not

affect the estimation of the 3D shape, because they

are just choices of the coordinate system. Next we can

calculate r11, r12, r13 directly based on r21, r22, r23 and

µ1, µ2, µ3. This recovers the camera projection matrix

and hence, by exploiting symmetry, we can also esti-

mate the 3D structure from a single image.

5 Overview of Structure from Motion with

Missing Keypoints

This section overviews how to jointly estimate the 3D

structure, the viewpoint, and recover the occluded 2D

keypoints from multiple images by SfM. This is not

straightforward because applying factorization to Eq.

(8) is not feasible if missing data exists in L or M. We

first formulate the problem in terms of energy mini-
mization with symmetry constraints and missing key-

points in Sect. 5.1. Then, we use coordinate descent,

or hard EM if the missing keypoints are treated as la-

tent variables, to optimize the energy function shown in

Sect. 5.2. After that, Sect. 5.3 gives a simple method to

initialize the occluded keypoints for the coordinate de-

scent/hard EM algorithm. The initialization of the 3D

structure and the viewpoint are much more complex,

depending on how we assume and how we deal with

the ambiguities (as discussed in Sect. 3). We discuss

the initialization of the 3D structure and the viewpoint

in later sections in Sects. 6 and 7 because there are tech-

nical differences between the rigid and non-rigid cases.

5.1 Problem Formulation

If missing keypoints exist, then estimating 3D structure

is more complex than described in Sect. 3. This is be-

cause applying factorization to Eq. (7), i.e. Q(S,R) =
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||L−R1Sx||22+||M−R2Syz||22, or Eq. (8), i.e. Q(S,R) =

||Y−RS||22 + ||Y†−RS†||22, will not be feasible. Hence,

we formulate an full energy function with missing points

which we then seek to minimize.
To deal with unobserved keypoints we divide them

into a visible set VS ,VS †and an invisible set IVS , IVS †.
Then the full energy function can be formulated as:

Q(Rn, Sn, {Yn,p, (n, p) ∈ IVS}, {Y †n,p, (n, p) ∈ IVS†})

=
∑

(n,p)∈VS

||Yn,p −RnSn,p||22 +
∑

(n,p)∈VS†

||Y †n,p −RnS
†
n,p||22+

∑
(n,p)∈IVS

||Yn,p −RnSn,p||22 +
∑

(n,p)∈IVS†

||Y †n,p −RnS
†
n,p||22,

(19)

where {Yn,p, (n, p) ∈ IVS}, {Y †n,p, (n, p) ∈ IVS †} are

the missing keypoints.

5.2 Optimization of The Full Energy with Occluded

Keypoints

We adopt a coordinate descent method to jointly up-

date the unknowns (Rn, Sn, {Yn,p, (n, p) ∈ IVS}, {Y †n,p,
(n, p) ∈ IVS †}). This is equivalent to a hard EM algo-

rithm if we treat the missing keypoints {Yn,p, (n, p) ∈
IVS}, {Y †n,p, (n, p) ∈ IVS †} as latent variables, andRn, Sn

as unknown parameters. Note that the energy in Eq.

(19) w.r.t Rn, S, i.e. when the missing points are known

(or estimated), can be obtained as:

Q(Rn, Sn) =
∑
n

||Yn −RnSn||22 +
∑
n

||Y †n −RnS
†
n||22,

(20)

we call this the surrogate energy function.

The 3D structure Sn can be updated by optimizing

the surrogate energy function in Eq. (20):

Sn = (R>nRn+A>R>nRnA)−1(R>n Yn+ATRT
nY
†
n ). (21)

Note that if rigid deformation is assumed, Sn for dif-

ferent image n will be identical, i.e. Sn = S, ∀n. There-

fore, the common 3D structure S can be updated in its

vectorized form S by:

S =
(∑N

n=1(G>nGn +A>PG>nGnAP )
)−1 (∑N

n=1(G>nYn +A>PG>nY†n)
)
.

(22)

where S ∈ R3P×1,Yn ∈ R2P×1,Y†n ∈ R2P×1 are vector-

ized S, Yn, Y
†
n , respectively. Gn = IP ⊗ Rn and AP =

IP ⊗A. IP ∈ RP×P is an identity matrix.

Each Rn is updated under the orthogonality con-

straints RnR
>
n = I similar to the idea in EM-PPCA

Algorithm 1: Optimization of the full energy

in Eq. (19) with occluded keypoints.

Input: The stacked keypoint sets (for all the N
images) Y and Y† with occluded points, in
which each occluded point is set to 0 initially.

Output: The camera projection matrix Rn for each
image, the common 3D structure S (rigid
case) or each Sn (non-rigid case), and the
keypoints with recovered occlusions (Y)t

and (Y†)t.
1 Initialize the occluded points by Algorithm 2.
2 Initialize each Rn, the common S or each Sn by

Algorithm 3 (rigid case) or Algorithm 4 (non-rigid
case), respectively.

3 repeat
4 Update the common S by Eq. (22) (rigid case) or

each Sn Eq. (21) (non-rigid case).
5 Update each Rn according to the supplementary

material.
6 Calculate the occluded points by Eq. (24), and

update them in Yn, Y
†
n .

7 Centralize the Yn, Y
†
n by Eq. (25).

8 until Eq. (19) converge;

[44]: we first parameterize Rn to a full 3×3 rotation ma-

trix Q and update Q by its rotation increment. Please

refer to the supplementary material for the details.

Using Eq. (19) we can estimate the positions of the

occluded points of Y and Y† (i.e. the p-th point Yn,p
and Y †n,p) by minimizing the following energy:

Q(Yn,p, Y
†
n,p) =

∑
(n,p)∈IV S

||Yn,p −RnSp||22+

∑
(n,p)∈IV S†

||Y †n,p −RnASp||22. (23)

This gives an update rule which specifies the missing

point:

Yn,p = RnSp, Y †n,p = RnASp, (24)

where (n, p) ∈ IV S.

Note that we do not model the translation explic-

itly as the translation can be assumed being eliminated

by centralizing the data. However, since the occluded

points have been updated in our method, we have to

re-estimate the translation and re-centralize the data.

This is done by:

Yn ← Yn − 1>P ⊗ tn, Y †n ← Y †n − 1>P ⊗ tn,

tn =
∑
p

(Yn,p −RnSp + Y †n,p −RnASp). (25)

This coordinate descent/hard EM algorithm is not

guaranteed to converge to the global optimal, and re-

quires good initialization to obtain good performance.
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A simple initialization method for the occluded key-

points {Yn,p, (n, p) ∈ IVS}, {Y †n,p, (n, p) ∈ IVS †} is

given in the following subsection.

But the initialization for the 3D structure Sn and

the rotation matrix Rn is much more complex, and also

differs with rigid or non-rigid deformation assumptions

(because of different ambiguities in the factorization

methods). These are done by minimizing the surrogate

energy function with the missing variables initialized.

We will discuss this in detail in Sects. 6 and 7 for the

rigid and non-rigid case, respectively. The algorithm to

optimize the full energy Eq. (19) is summarized in Al-

gorithm 1.

5.3 Initialization of the Missing Data

In this section, we describe how we initialize the missing

data without exploiting the symmetry. This uses all the

observed keypoints and can be used to initialize the

missing keypoints for the surrogate energy function, or

alternatively directly to initialize the full energy.

We use a very simple missing data initialization al-

gorithm, which is similar to Tomasi-Kanade factoriza-

tion [42] with rank 3 pruning/recovery. This is because:

(I) The missing keypoints can be further updated iter-

atively when we optimize the full energy function. This

resembles a general EM algorithm where the missing

keypoints are treated as latent variables and updated

during the E-step. (II) Missing data recovery is not the

main focus of our paper, and we found that this sim-

ple algorithm can already yield a good initialization.

We point out that more advanced missing data ini-

tialization methods exist, such as [33] which can bet-

ter address the possible degenerate images/frames. We

leave incorporating more advanced missing data initial-

izations (such as [33]) as our future work.

Let Y = [Y >1 , ..., Y
>
N ]> ∈ R2N×P ,Y† = [(Y †1 )>, ...,

(Y †N )>]> ∈ R2N×P are the stacked keypoints for all

the images, and R = [R>1 , ...R
>
N ]> ∈ R2N×3 are the

stacked camera projection. Thus, we have YAll = [Y,

Y†] = R[S,AS]. It implies that YAll has the same rank,

namely 3, with R[S,AS] given all the points of [S,AS]

do not lie on a plane or line. Therefore, rank 3 recovery

can be used to initialize the missing points. Also, the

same centralization as in the previous section has to be

done after each iteration of the missing points.

The initialization of the missing points is summa-

rized in Algorithm 2.

Algorithm 2: The initialization of the oc-

cluded points.

Input: The stacked keypoint sets (for all the N
images) Y and Y† with occluded points, in
which each occluded point is set to 0 initially.
The number of iterations T (default 10).

Output: The keypoints with initially recovered
occlusions (Y)t and (Y†)t.

1 Set t = 0, initialize the occluded points ignoring
symmetry by:

2 while t < T do
3 Centralize YAll = [(Y)t, (Y†)t] by Eq. (25).

4 Do SVD on YAll ignoring the symmetry, i.e.

[A, Σ,B] = SVD
(
YAll

)
.

5 Use the first 3 component of Σ to reconstruct the

keypoints (YAll)new.
6 Replace the occluded points in (Y)t, (Y†)t by

these in (YAll)new and set t← t+ 1.
7 end

6 Symmetric Rigid Structure from Motion

This section describes the symmetric rigid structure

from motion (Sym-RSfM) method. Note that the prob-

lem described here assumes all the keypoints have been

initialized. This section relates to Sect. 5 (specifically,

Step 2 of Algorithm 1).

By assuming all keypoints are initialized (or esti-

mated), we obtain a matrix factorization problem in

Sect. 6.1 of the form described in Sect. 3. To solve

this requires analyzing the novel ambiguities which arise

when using the symmetry constraints in Sect. 6.2. Fi-

nally, in Sect. 6.3, we estimate the 3D structure and

camera parameters by solving these ambiguities.

For consistency with our baseline methods [42], we

assume orthographic projection and the keypoints are

centralized without translation.

6.1 Problem Formulation

Our problem on the rigid SfM with symmetry con-

straints is:

Q(S,R) = ||Y −RS||22 + ||Y† −RS†||22. (26)

Note that the energy function in Eq. (26) cannot

be solved directly, because the two energy terms are

dependent. Therefore, we follow the ideas in Sect. 3 to

change the coordinates from Y, Y† to L, M to exploit

the symmetry, and obtaining the equations:

L =
Y −Y†

2
= R1Sx, M =

Y −Y†

2
= R2Syz. (27)

This re-expresses the energy function in Eq. (26) in

the form:

Q(R, S) = ||L−R1Sx||22 + ||M−R2Syz||22. (28)
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6.2 The Ambiguities in Symmetric Rigid Structure

from Motion

We have decomposed the energy into two energy terms

which can both be solved independently by SVD. For

each energy term, there will be an ambiguity in the so-

lution, but we can resolve these by requiring consistency

between the solutions of each energy term.

Equation (28) implies that we can estimate R1, Sx

and R2, Syz by matrix factorization on L and M in-

dependently up to ambiguities. Then we combine them

to remove this ambiguity by exploiting the orthogonal-

ity constraints on each Rn: i.e. RnR
>
n = I. Applying

SVD to L and M gives us estimates, R̂1, Ŝx, R̂
2, Ŝyz,

of R1, Sx and R2, Syz up to ambiguities λ and B:

L = R1Sx = R̂1λλ−1Ŝx,

M = R2Syz = R̂2BB−1Ŝyz. (29)

Here R1 and R2 are the decomposition of the true pro-

jection matrix R, i.e. R = [R1,R2], and R̂1 and R̂2

are the output from SVD. Equations (29) shows that

there is a scale ambiguity λ between R̂1 and R1, and

a 2-by-2 matrix ambiguity B ∈ R2×2 between R̂2 and

R2.

Observe from Eq. (29) that the ambiguities (i.e. λ

and B) are the same for the projection matrices of all

the images. For the following derivation, we analyze the

ambiguity for the n’th image, i.e. projection matrix Rn.

Using Eqs. (29), we represent the true projection Rn by:

Rn = [R1
n, R

2
n] = [R̂1

n, R̂
2
n]

[
λ, 0

0, B

]
= R̂n

[
λ, 0

0, B

]
, (30)

where R1
n ∈ R2×1 and R2

n ∈ R2×2 are the first single

column and second-third double columns of the true

projection matrix Rn. R̂1
n ∈ R2×1 and R̂2

n ∈ R2×2 are

the estimation of R1
n and R2

n from the matrix factor-

ization, and R̂n = [R̂1
n, R̂

2
n].

The main idea to solve the symmetry-induced am-

biguities λ and B is to exploit the orthogonality con-

straint, namely

RnR
>
n = I. (31)

Remark 1 Equations (30) and (31) imply that the am-

biguity between R1 and R̂1, (i.e. in the symmetry di-

rection), is just a sign change, which is caused by cal-

culating λ from λ2. In other words, the symmetry di-

rection can be fixed to be the x-axis in our coordinate

system using the decomposition Eq. (27). We have a

2 × 2 rotation ambiguity between R2 and R̂2, by cal-

culating B from BB>.

Algorithm 3: Symmetric Rigid Structure

from Motion (Without Occlusions).

Input: The stacked keypoint sets Y and Y† from N
images (without occlusions).

Output: The common 3D structure S, and the
camera matrix Rn for each image.

1 Change the coordinates to decouple the symmetry
constraints by Eq. (27).

2 Get R̂1, R̂2, Ŝx, Ŝyz by doing SVD on L,M, i.e. Eq.
(29).

3 Solve the squared ambiguities λ2 and BB> by Eq.
(35).

4 Solve for λ from λ2, and B from BB>, up to sign
and rotation ambiguities.

5 Recover R and S by Eq. (36).

6.3 Solve the Ambiguities to Estimate the True 3D

Structure and Rotation Matrix

In order to solve the ambiguities, we expend R̂n by:

R̂n = [R̂1
n, R̂

2
n] =

[
r̂1,1n , r̂1,2:3n

r̂2,1n , r̂2,2:3n

]
. (32)

Substituting Eqs. (30) and (32) into Eq. (31) (by

derivations detailed in the supplementary material) yields:

Anx = [1 1 0]>,

An =

 (r̂1,1n )2, r̂1,2:3n ⊗ r̂1,2:3n

(r̂2,1n )2, r̂2,2:3n ⊗ r̂2,2:3n

r̂1,1n r̂2,1n , r̂1,2:3n ⊗ r̂2,2:3n




1 0 0 0 0

0 1 0 0 0

0 0 1 1 0

0 0 0 0 1


>

∈ R3×4,

x = [λ2, bb1, bb2, bb3]> ∈ R4×1, (33)

where bb1, bb2, bb3 come fromBB>, i.e. BB> =

[
bb1 bb2
bb2 bb3

]
,

and ⊗ denotes Kronecker product.

Stacking An for all the images gives a set of over-

determined equations for the unknown x (i.e. 3N equa-

tions for 4 unknowns):

Ax = b,

A = [A>1 , ..., A
>
N ]> ∈ R3N×4,

b = 1N ⊗ [1, 1, 0]> ∈ R3N×1. (34)

These over-determined linear equations can be solved

efficiently by LSE:

x = (A>A)−1A>b. (35)

Equation (35) gives the estimates of λ2 and BB>.

Recovering λ from λ2 is straightforward up to a sign

ambiguity. We also show in the supplementary mate-

rial that B can be recovered up to a rotation ambiguity

on the yz-plane, which also does not affect the recon-

structed 3D structure.
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Given λ,B, R̂, Ŝ, we get the initial estimation of the

true R and S by:

R = R̂

[
λ, 0

0, B

]
, S =

[
λ, 0

0, B

]−1
Ŝ. (36)

The algorithm for Sym-RSfM (without occlusions)

is summarized in Algorithm 3. The full Sym-RSfM method

with occlusion reasoning is summarized in Fig. 3, where

the algorithm discussed in this section, i.e. , Algorithm

3, is used to initialize the projection energy minimiza-

tion (with occlusions) problem in Algorithm 1.

Fig. 3 The flowchart of the full rigid Sym-RSfM method
with occlusion reasoning.

7 The Symmetric Prior-Free Matrix

Factorization Method for Non-Rigid Structure

from Motion

This section, and the following section, addresses how

to exploit the symmetry constraints for multiple image

3D structure estimation when the deformation is non-

rigid.

Recall that the ambiguities in non-rigid SfM are

more complex than those in rigid SfM, this is due to

the combination of the deformation bases and the coef-
ficient for non-rigid deformation. As mentioned earlier,

the non-rigid SfM methods differ in ways how they deal

with this additional ambiguities.

In this section, we rely on the recent research that

these additional ambiguities are also gauge freedoms,

which do not affect the estimate of the 3D structure [2,

12,13] to develop our non-rigid SfM method exploiting

symmetry. These pioneer research in [2, 12, 13] enables

us to achieve a direct matrix factorization method for

non-rigid SfM which exploits symmetry, which is named

Sym-PriorFree method.

Sym-PriorFree is very similar to, and can be re-

garded as a direct extension of, Sym-RSfM. Similarly,

we first give the problem formulation in Sect. 7.1. Then,

the ambiguities under symmetry constraints are ana-

lyzed in Sect. 7.2, and we solve these ambiguities in

Sect. 7.3. Finally, in Sect. 7.4, we discuss how to es-

timate the 3D structure and the rotation matrix after

solving the ambiguities, because this is more compli-

cated than for the rigid case.

Also note that the presentation in this section as-

sumes that all keypoints are either visible or have been

initialized/estimated. We deal with missing keypoints

using similar methods to those used for the rigid case.

More specifically, we can also simultaneously recover

them by Algorithm 1 (Step 2) by the Sym-PriorFree

method described here as initialization.

7.1 Problem Formulation

Our derivation follow the strategy for exploiting sym-

metry outlined in Sect. 3. Assume that Yn ∈ R2×P and

Y †n ∈ R2×P are the P keypoint pairs for image n with-

out occlusions, we have:

Yn = RnSn = [zn1Rn, ..., znKRn][V1, ...,VK ]> = ΠnV,

Y †n = RnS
†
n = [zn1Rn, ..., znKRn][V†1, ...,V

†
K ]> = ΠnV†,

(37)

where zn = [zn1, ..., znK ] ∈ R1×K , Πn = Rn(zn ⊗ I3) ∈
R2×3K , and V = [V>1 , ...,V

>
K ]> ∈ R3K×P .

Let Y be the stacked keypoints of N images, Y =

[Y >1 , ..., Y
>
N ]> ∈ R2N×P , the model is represented by:

Y =RS =

 R1S1

...

RNSN

 =

 z11R1, ..., z1KR1

...
. . .

...

zN1RN , ..., zNKRN


V1

...

VK


=ΠV, (38)

where R = blkdiag([R1, ..., RN ]) ∈ R2N×3N are the

stacked camera projection matrices, in which blkdiag

denotes block diagonal. S = [S>1 , ..., S
>
N ]> ∈ R3N×P are

the stacked 3D structures. Π = R(z ⊗ I3) ∈ R2N×3K ,

where z ∈ RN×K are the stacked coefficients. Similar

equations apply to Y†.

Note that R ∈ R2N×3N , V ∈ R3K×P are stacked

differently from how they were stacked for the Sym-SfM

method (i.e. R ∈ R2N×3, V ∈ R3P×K). It is because

now we have N different Sn’s (i.e. S ∈ R3N×P ), while

there is only one common S in the Sym-RSfM method.

In the following, we assume the deformation bases

are symmetric, which ensures that the non-rigid struc-

tures are symmetric (e.g. the deformation from sedan to

truck is non-rigid and symmetric since sedan and truck

are both symmetric). This yields an energy function:

Q(R,S) =||Y −RS||22 + ||Y† −RS†||22
=||Y −ΠV||22 + ||Y† −ΠV†||22. (39)

Remark 2 Note that we cannot use the first equation

of Eq. (39) to solve R,S directly (even if not exploiting

symmetry), because Y and Y† are of rankmin{2N, 3K,
P} but estimating R,S directly by SVD on Y and/or
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Y† requires rank 3N matrix factorization. Hence we

focus on the last equation of Eq. (39) to get the ini-

tialization of Π,V firstly. Then, R,S can be updated

by coordinate descent on the first equation of Eq. (39)

under orthogonality constraints on R and low-rank con-

straint on S.

We perform the coordinate transformation from Y,

Y† to L, M as Sect. 3:

L =
Y −Y†

2
= Π̂1V̂x, M =

Y + Y†

2
= Π̂2V̂yz,

(40)

where Π̂1 ∈ R2N×K and Π̂2 ∈ R2N×2K , V̂x ∈ RK×P

and V̂yz ∈ R2K×P are both independent.

This yield two independent energies to be minimized

separately by SVD:

Q(Π,V) = ||L− Π̂1V̂x||22 + ||M− Π̂2V̂yz||22. (41)

7.2 The Ambiguities in Symmetry Prior Free Matrix

Factorization Method

Solving Eq. (41) by matrix factorization gives us solu-

tions up to a matrix ambiguity H. More precisely, there

are ambiguity matrices H1, H2 between the true solu-

tions Π1,Vx,Π
2,Vyz and the initial estimation output

by matrix factorization Π̂1, V̂x, Π̂
2, V̂yz:

L = Π1Vx = Π̂1H1(H1)−1V̂x,

M = Π2Vyz = Π̂2H2(H2)−1V̂yz. (42)

where H1 ∈ RK×K and H2 ∈ R2K×2K .

Now, the problem becomes to find H1, H2. Note

that we have orthogonality constraints on each camera

projection matrix Rn, which further impose constraints

on Πn. Thus, it can be used to partially estimate the

ambiguity matrices H1, H2. Since the factorized ma-

trix, i.e. L and M, are the stacked 2D keypoints for all

the images, thus H1 and H2 obtained from one image

must satisfy the orthogonality constraints on other im-

ages, hence we use Πn ∈ R2×3K (i.e. from image n) for

our derivation.

Let Π̂n = [Π̂1
n, Π̂

2
n] =

[
π̂1,1:K
n , π̂1,K+1:3K

n

π̂2,1:K
n , π̂2,K+1:3K

n

]
, where

π̂1,1:K
n , π̂2,1:K

n ∈ R1×K are the first K columns of the

first and second rows of Π̂n, and π̂1,K+1:3K
n , π̂2,K+1:3K

n ∈
R1×2K are the last 2K columns of the first and second

rows of Π̂n, respectively. Thus, Eq. (42) implies:

Ln = Π̂1
nH

1(H1)−1V̂x =

[
r11n
r21n

]
znVx,

Mn = Π̂2
nH

2(H2)−1V̂yz =

[
r1,2:3n

r2,2:3n

]
(zn ⊗ I2)Vyz, (43)

where Ln,Mn ∈ R2×P are the n’th double-row of L,M.

[r11n , r
12
n ]> is the first column of the camera projection

matrix of the n’th image Rn, and [(r1,2:3n )>, (r2,2:3n )>]>

is the second and third columns of Rn.

Let h1k ∈ RK×1, h2k ∈ R2K×2 be the kth column and

double-column of H1, H2, respectively. Then, from Eq.

(43), we get:

Π̂1
nh

1
k =

[
π̂1,1K
n

π̂2,1K
n

]
h1k = znk

[
r11n
r21n

]
,

Π̂2
nh

2
k =

[
π̂1,K+1:3K
n

π̂2,K+1:3K
n

]
h2k = znk

[
r1,2:3n

r2,2:3n

]
. (44)

By merging the equations of Eq. (44) together, Rn

can be represented by:

[Π̂1
nh

1
k, Π̂

2
nh

2
k] = znkRn. (45)

Remark 3 Similar to the rigid symmetry case in Eq.

(29), Eq. (45) indicates that there is no rotation ambi-

guity in the symmetric direction (i.e., the x direction).

The rotation ambiguities only exist in the yz-plane (i.e.

the non-symmetric plane).

7.3 Solve the Ambiguities in Symmetry Prior Free

Matrix Factorization Method

The main idea to solve the ambiguities here is similar

to that in Sym-RSfM, i.e. we exploit the orthogonality

constraints RnR
>
n = I. Using Eq. (45) and the orthog-

onality constraints, we have:

[Π̂1
nh

1
k, Π̂

2
nh

2
k][Π̂1

nh
1
k, Π̂

2
nh

2
k]> = z2nkI (46)

Remark 4 The main difference of the derivations from

the orthogonality constraints between the rigid and non-

rigid cases is that, for the rigid case, the dot product

of each row of Rn is equal to 1, while for the non-rigid

case, i.e. Eq. (46), the dot product on each row of Πn

gives us a unknown value z2nk. But note that the un-

known z2nk is the same for the dot products on Row 1,

and Row 2, of Πn, this suggests that we can eliminate

z2nk by subtracting the dot product on the both rows of

Πn.

Next, we substitute Eq. (44) into Eq. (46), then

eliminate the unknown z2nk as suggested by Remark

4. After several derivations (which is detailed in the

supplementary material), we arrive at similar Anx = 0

equations as Sym-RSfM in Eq. (47), where ⊗ denotes

Kronecker product.

Stacking An for all the images yields the constraints:

Ax = 0,

A = [A>1 , ..., A
>
N ]>. (48)
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Anx = 0, x = [vec(h1kh
1>
k )>, vec(h2kh

2>
k )>]>,

An =

[
π̂1,1:K
n ⊗ π̂1,1:K

n − π̂2,1:K
n ⊗ π̂2,1:K

n , π̂1,K+1:3K
n ⊗ π̂1,K+1:3K

n − π̂2,K+1:3K
n ⊗ π̂1,K+1:3K

n

π̂1,1:K
n ⊗ π̂2,1:K

n , π̂1,K+1:3K
n ⊗ π̂2,K+1:3K

n

]
. (47)

At first sight, it seems that Eq. (48) are not sufficient

to solve for the ambiguity matrix H due to rank insuffi-

ciency [48], i.e. the solution of x lies in the null space of

A of dimensionality (2K2−K) [48]. However, later re-

search [4] proved that this rank insufficiency was merely

a “gauge freedom” because all legitimate solutions lying

in this subspace (despite under-constrained) gave the

same solutions for the 3D structure. More technically,

the ambiguity of H corresponds only to a linear com-

bination of H’s column-triplet and a rotation on H [2].

This observation was exploited by Dai et al. in [12,13],

where they showed that, up to the ambiguities afore-

mentioned, hkh
>
k can be solved by the intersection of

three subspaces as we will describe in the following.

Following the strategy in [12, 13], we have the in-

tersection of subspaces conditions shown in Eq. (49).

{
A

[
vec(h1kh

1>
k )

vec(h2kh
2>
k )

]
= 0

}
∩
{
h1kh

1>
k � 0

h2kh
2>
k � 0

}
∩
{

rank(h1kh
1>
k ) = 1

rank(h2kh
2>
k ) = 2

}
.

(49)

The first subspace comes from Eq. (48), i.e. the so-

lutions of the Eq. (48) lie in the the null space of A of

dimensionality (2K2−K) [48]. The second subspace re-

quires that h1kh
1>
k and h2kh

2>
k are positive semi-definite.

The third subspace comes from the fact that h1k is of

rank 1 and h2k is of rank 2.

Note that as stated in [12, 13], Eq. (49) imposes all

the necessary constraints on x. There is no difference in

the recovered 3D structures using the different solutions

that satisfy Eq. (49).

We can obtain a solution of x, under the condition

of Eq. (49), by standard semi-definite programming:

min ||h1kh1>k ||∗ + ||h2kh2>k ||∗
s. t. h1kh

1>
k � 0, h2kh

2>
k � 0,

A[vec(h1kh
1>
k )>, vec(h2kh

2>
k )>]> = 0, (50)

where || · ||∗ indicates the trace norm.

7.4 Recovering the 3D Structure and the Camera

Rotation Matrix

After solving h1k and h2k by Eq. (50), Eq. (45) (i.e.

[Π̂1
nh

1
k, Π̂

2
nh

2
k] = znkRn) implies that the camera pro-

jection matrix Rn can be obtained by normalizing the

Algorithm 4: Symmetry Prior Free Matrix

Factorization Algorithm (Without Occlusions).

Input: The stacked keypoint sets Y and Y† from N
images (without occlusions).

Output: The 3D structure Sn and the camera
matrix Rn for each image.

1 Change the coordinates to decouple the symmetry
constraints by Eq. (40).

2 Get Π̂1, Π̂2, V̂x, V̂yz by doing SVD on L,M, i.e.
Eq. (42).

3 Solve the ambiguities h1
k and h2

k by Eq. (50).
4 Get Rn by Eq. (51), then R = blkdiag([R1, ..., RN ]).
5 Recover Sn by Eq. (52).

two rows of [Π̂1
nh

1
k, Π̂

2
nh

2
k] to have a unit `2 norm [12,13]:

Rn = [Π̂1
nh

1
k, Π̂

2
nh

2
k]/||[Π̂1

nh
1
k, Π̂

2
nh

2
k]||2. (51)

Then, R is constructed by R = blkdiag([R1, ..., RN ]).

When the camera parameters are obtained, we can

solve for the 3D structure by adopting the methods

in [12, 13], i.e. by minimizing a low-rank constraint on

rearranged more compact S] under the orthographic

model.

Similar to [12,13], the structure S can be estimated

by:

min ||S]||∗
s. t. [Y,Y†] = R[S,ANS] S] = [Px,Py,Pz](I3 ⊗ S),

(52)

where AN = IN ⊗ A, S = [S>1 , ..., S
>
N ]> ∈ R3N×P .

Px,Py,Pz ∈ RN×3N are the row-permutation matrices

of 0 and 1 that select (I3⊗S) to form S], i.e. Px(i, 3i−
2) = 1,Py(i, 3i − 1) = 1,Pz(i, 3i) = 1 for i = 1, ..., N .

Finally, S] ∈ RN×3P is rearranged more compact 3D

structure, i.e.

S] =

x11, ..., x1P , y11, ..., y1P , z11, ..., z1P...
...

...
...

...
...

xN1, ..., xNP , yN1, ..., yNP , zN1, ..., zNP

 .
(53)

The algorithm for symmetry prior free matrix fac-

torization (without occlusions) is summarized in Algo-

rithm 4. Similar to the Sym-RSfM, Algorithm 4 can
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produce a good non-rigid SfM initialization for Algo-

rithm 1 (i.e. Step 2 of Algorithm 1) if occluded key-

points exist. The full Sym-PriorFree method with oc-

clusion reasoning is summarized in Fig. 4.

Fig. 4 The flowchart of the full non-rigid Sym-PriorFree
method with occlusion reasoning.

8 The Symmetric EM-PPCA Method for

Non-Rigid Structure from Motion

In this section, we discuss another approach to exploit

symmetry in non-rigid SfM, which is quite different

from the Sym-PriorFree method proposed in Sect. 7.

The method proposed in this section follows the

other idea to address the additional ambiguities in non-

rigid SfM, as discussed in Sect. 3. Specifically, we follow

the idea of the Expectation-Maximization Probabilistic

Principal Component Analysis (EM-PPCA) method to

regularize the problem, by imposing a Gaussian prior

on the (deformation) coefficient to eliminate the addi-

tional gauge freedom [44]. We name our algorithm as

Symmetric EM-PPCA (Sym-EM-PPCA).

In addition, being different with Sym-PriorFree which

is a direct matrix factorization method extending the

rigid one (i.e. Sym-RSfM in Sect. 6), Sym-EM-PPCA
is an indirect method which iteratively optimizes a spe-

cific energy function (or marginal probability) and takes

the output of Sym-RSfM as initialization.

As an iterative method, Sym-EM-PPCA can natu-

rally deal with the occluded keypoints using the same

idea in Sect. 5, i.e. by treating the occluded keypoints

as latent variables and update them after optimizing all

the unknown parameters. In fact, we use a variant of Al-

gorithm 1, namely Algorithm 1 fulfilled by Sym-RSfM

(Algorithm 3), as the initialization when the occlusion

exists.

In the rest of this section, we first discuss the prob-

lem formulation in Sect. 8.1. In Sect. 8.2, we give an

EM algorithm to optimize the problem. Finally, we de-

tail the initialization of the EM algorithm in Sect. 8.3.

We assume occlusion applies in this section. The key-

point matrices are reshaped/vectorized (using black-

board bold characters, e.g. Yn) for convenient deriva-

tion. We use the same weak-perspective camera and

explicitly model translation as [44].

8.1 Problem Formulation

In EM-PPCA [44], Bregler et al. assume that the 3D

structure is represented by a mean structure S̄ plus a

non-rigid deformation. Suppose there are P keypoints

on the structure, the non-rigid model of EM-PPCA is:

Yn = Gn(S̄ + Vzn) + Tn +Nn, (54)

where Yn ∈ R2P×1, S̄ ∈ R3P×1, and Tn ∈ R2P×1 are

the stacked vectors of 2D keypoints, 3D mean structure

and translations. Gn = IP ⊗ cnRn, in which cn is the

scale parameter for weak perspective projection, V =

[V1, ...,VK ] ∈ R3P×K is the grouped K deformation

bases, zn ∈ RK×1 is the coefficient of the K bases, and

Nn is the Gaussian noise Nn ∼ N (0, σ2I).

Extending Eq. (54) to our symmetry problem in

which there are P keypoint pairs Yn and Y†n, we have:

Yn = Gn(S̄ + Vzn) + Tn +Nn,

Y†n = Gn(S̄† + V†zn) + Tn +Nn. (55)

As before, we assume that the object is symmet-

ric along the x-axis which implies that the relationship

between S̄ and S̄†, V and V† are:

S̄† = AP S̄, V† = APV, (56)

where AP = IP ⊗ A (recall that A = diag([−1, 1, 1]))

and IP ∈ RP×P is an identity matrix. Thus, we have2:

P (Yn|zn, Gn, S̄,V,T) = N (Gn(S̄ + Vzn) + Tn, σ
2I),

P (Y†n|zn, Gn, S̄,V†,T) = N (Gn(AP S̄ + V†zn) + Tn, σ
2I).

(57)

Following Bregler et al. [44], we introduce a prior

P (zn) on the coefficient variable zn. This prior is a zero

mean unit variance Gaussian. It is used for (partly) reg-

ularizing the inference task but also for dealing with the

ambiguities between basis coefficients zn and bases V,

as mentioned above (when [44] was published it was not

realized that these are “gauge freedoms”). This enables

us to treat zn as the hidden variable and use the EM

algorithm to estimate the structure and camera view-

point parameters. The formulation of the problem, in

terms of Gaussian distributions (or, more technically,

the use of conjugate priors) means that both steps of

the EM algorithm are straightforward to implement.

2 Note that we set hard constraints on S̄ and S̄†, i.e. replace
S̄† by AP S̄ in Eq. (57), because it can be guaranteed by our
Sym-RSfM initialization in Sect. 6. While the initialization
on V and V† by PCA cannot guarantee such a desirable
property, thus a Language multiplier term is used for the
constraint on V and V† in the following Eq. (61).
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Remark 5 Our Sym-EM-PPCA method is a natural ex-

tension of the method in [44] to maximize the marginal

probability P (Yn,Y†n|Gn, S̄,V,V†,T) with a Gaussian

prior on zn and a Language multiplier term (i.e. a reg-

ularization term) on V,V†. This can be solved by gen-

eral EM algorithm [5], where both the E and M steps

take simple forms because the underlying probability

distributions are Gaussians (due to conjugate Gaussian

prior).

Fig. 5 The graphical model of the variables and parameters.

8.2 EM Algorithm for Optimization

In the following, we introduce an EM algorithm to max-

imize the marginal probability P (Yn,Y†n|Gn, S̄,V,V†,T).
E-Step: This step is to get the statistics of zn from

its posterior. Let the prior on zn be P (zn) = N (0, I) as
in [44]. Then, we have P (zn), P (Yn|zn;σ2, S̄,V, Gn,Tn)
and P (Y†n|zn;σ2, S̄,V†, Gn,Tn), which do not provide
the complete posterior distribution directly. Fortunately,
the conditional dependence of the variables shown in
Fig. 5 (graphical model) implies that the posterior of
zn can be calculated by:

P (zn|Yn,Y†n;σ2, S̄,V,V†, Gn,Tn)

∼P (zn,Yn,Y†n|σ2, S̄,V,V†, Gn,Tn)

=P (Yn|zn;σ2, S̄,V, Gn,Tn)P (Y†n|zn;σ2, S̄,V†, Gn,Tn)P (zn)

≡N (zn|µn, Σn). (58)

The last equation of Eq. (58) is obtained by the

fact that the prior and the conditional distributions of

zn are all Gaussians (conjugate prior), where we denote

the mean and variance of zn as µn and Σn, respectively,

i.e. :

µn ≡E[zn] = γV>G>n (Yn −GnS̄− Tn)+

γV†>G>n (Y†n −GnAP S̄− Tn), (59)

Σn ≡E[znz
>
n ]− E[zn]E[zn]> = σ2γ−1. (60)

where γ = (V>G>nGnV + V†>G>nGnV† + σ2I)−1.
M-Step: This is to maximize the joint likelihood,

which is similar to the coordinate descents in the Sym-
RSfM and the Sym-PriorFree methods in the previous

Algorithm 5: The Symmetry-EM-PPCA Al-

gorithm (With Occlusions).

Input: The stacked keypoint sets from all the N
images Y and Y† with occluded points, in
which each occluded point is set to 0 initially.

Output: The 3D structure Sn and the camera
matrix Rn for each image, and the 2D
keypoints with recovered occlusions.

1 Initialize Rn, S̄ = S, and the occluded keypoints in

Y and Y† by Algorithms 1 and 3.
2 Initialize cn = 1, and tn by Eq. (63).

3 Initialize V and V† by Eq. (64).

4 Maximize P (Yn,Y†n|Gn, S̄,V,V†,T) by EM:
5 repeat
6 E-Step: Update the statistics of zn, i.e. µn and

φn, by Eqs. (59) and (60).
7 M-Step: Update the unknown parameters in θ

by optimizing Eq. (61).
8 Update the occluded keypoint by Eq. (62), and

fill them in Yn and Y†n.
9 until P (Yn,Y†n|Gn, S̄,V,V†,T) converge;

sections. The complete log-likelihood Q(θ) is:

Q(θ)

=λ||V† −AP V||2 −
∑
n

lnP (Yn,Y†n|zn;Gn, S̄,V,V†,Tn, σ
2)

=λ||V† −AP V||2 −
∑
n

lnP (Yn|zn;Gn, S̄,V,Tn, σ
2)−∑

n

lnP (Y†n|zn;Gn, S̄,V†,Tn, σ
2),

s. t. RnR
>
n = I, (61)

where θ = {Gn, S̄,V,V†,Tn, σ
2}.

The maximization of Eq. (61) is straightforward, i.e.

taking the derivative of each unknown parameter in θ

and equating it to 0. The update rule of each parameter

is very similar to the original EM-PPCA [44] (except

S̄,V,V† should be updated jointly), which we put in

the supplementary material.

After estimated all the other latent variables and

the unknown parameters, we can further update the

occluded keypoints {Yn,p, (n, p) ∈ IVS}, {Y †n,p, (n, p) ∈
IVS †} by:

Yn,p = Rn(S̄p + Vpzn) + tn,

Y †n,p = Rn(AS̄p + V†pzn) + tn, (62)

where S̄p ∈ R3×1 is the [p, p + P , p + 2P ]-th elements

of S, Vp ∈ R3×K is the [p, p+P , p+ 2P ]-th rows of V,

tn ∈ R2×1 is the translation (which is the same for all

the keypoints within the same image).

8.3 Initialization

The camera rotation matrix Rn, the mean shape S̄,

and the occluded points Yn,p, Y
†
n,p) can be initialized
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Fig. 6 The flowchart of the full non-rigid Sym-EM-PPCA method with occlusion reasoning.

by Sym-RSfM with coordinate descent, i.e. Algorithms

1 and 3. The scale cn is initialized as 1, the translation

tn is initialized by:

tn =
∑
p

(Yn,p −RnS̄p + Y †n,p −RnAS̄p). (63)

Then, the deformation bases V and V† can be ini-

tialized by doing PCA on the residual of the 2D key-

points minus their rigid projections iteratively, i.e. :

PCA on (Y−RS̄−1>P⊗tn), (Y†−RS̄†−1>P⊗tn). (64)

The algorithm for Sym-EM-PPCA is summarized

in Algorithm 5, which makes use of the results from

Sym-RSfM as initialization. We also summarize a al-

gorithmic flowchart for the Sym-EM-PPCA method in

Fig. 6.

9 Experimental Results

This paper discusses 3 different scenarios to reconstruct

the 3D structure: (i) reconstruction from a single im-

age using symmetry and the Manhattan assumptions

(Sect. 4), (ii) reconstruction from multiple images using

symmetric rigid SfM (Sect. 6), (iii) reconstruction from

multiple images using symmetric non-rigid SfM (Sects.

7 and 8). The experiments are performed on the Pas-

cal3D+ dataset. This contains object categories such as

aeroplane and car. In Pascal3D+, the object categories

are further divided into subtypes, such as sedan car,

we show all the subtypes of the car category in Fig. 73.

For each object subtype, we estimate the 3D structure

and the viewpoint. The 3D structure is specified by the

3D keypoints in Pascal3D+ [47] and we also have corre-

sponding keypoints in the 2D images from Berkeley [6].

These are the same experimental settings used in [26].

For evaluation, we calculate the rotation error eR
and shape error eS , as in [3, 12, 13, 18]. Note that Pas-

cal3D+ provided only one common shape for each sub-

type, therefore, we report the shape error according to

3 For the subtypes of more categories, please refer to the
Pascal3D+ official website at http://cvgl.stanford.edu/

projects/pascal3d.html.

Fig. 7 Illustration of the 10 subtypes (denoted by the Roman
numerals) for the car category in the Pascal3D+ dataset.

each subtype4. The 3D groundtruth and our 3D esti-

mates may have different scales, so we normalize them

before evaluation. For each shape Sn we use its standard

deviations in X,Y, Z coordinates σx
n, σ

y
n, σ

z
n for the nor-

malization: Snorm
n = 3Sn/(σ

x
n + σy

n + σz
n). To deal with

the rotation ambiguity between the 3D groundtruth

and our reconstruction, we use the Procrustes method

[40] to align them. Assume we have 2P keypoints, i.e.

P point pairs, the the rotation error eR and shape error

eS can be calculated as:

eR =
1

N

N∑
n=1

||Raligned
n −R∗n||F, (65)

eS =
1

2NP

N∑
n=1

2P∑
p=1

||Snorm aligned
n,p − Snorm∗

n,p ||F, (66)

whereRaligned
n andR∗n are the recovered and the ground-

truth camera projection matrix for image n. Snorm aligned
n,p

and Snorm∗
n,p are the normalized estimated and the nor-

malized groundtruth structure for the p’th point of im-

age n. Raligned
n and R∗n, Snorm aligned

n,p and Snorm∗
n,p are

aligned by the Procrustes method [40].

In the following, we perform the experiments on

single image in Sect. 9.1, multiple images with rigid

deformations in Sect. 9.2, and multiple images with

non-rigid deformations in Sect. 9.3. The experiments

demonstrate that, for single image case, our results are

very promising if all keypoints are visible without noisy

annotations; for the multiple images reconstruction, our

methods outperform the corresponding state-of-the-art

4 For the rigid case, as we use the images from the same
subtype as input (so that we can reasonably assume rigid de-
formation among them), therefore, we also report the rotation
error according to subtype for the rigid experiments.

http://cvgl.stanford.edu/projects/pascal3d.html
http://cvgl.stanford.edu/projects/pascal3d.html
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Fig. 8 Illustration of the reconstruction results for aeroplane using symmetry and Manhattan on single image. For each
subfigure triplet, the first subfigure is the 2D image, the second and third subfigures are the 3D structure from the original and
rectified viewpoints. The gauge freedoms of sign ambiguities can also be observed by comparing the rectified 3D reconstructions,
i.e. the third subfigures. The Red, Green, Blue lines represent the 3 Manhattan directions (i.e. left-right, front-end, top-bottom),
and other directions are represented by the Black lines (best view in color).

methods in most cases in both rigid and non-rigid set-

tings, respectively.

9.1 Experiments on Single Image

We use aeroplanes for this experiment because the 3

Manhattan directions (e.g. left wing→ right wing, nose

→ tail, and top rudder → bottom rudder) can be ob-

tained directly, see Fig. 1. Also, aeroplanes are generally

far away from the camera, implying that orthographic

projection is a good approximation.

We selected 42 images with clear 3 Manhattan di-

rections and with no occluded keypoints from the aero-

plane category of the Pascal3D+ dataset, and evaluated

the results by the Rotation Error and Shape Error (Eq.

(66)). The shape error is obtained by comparing the re-

constructed structure with their subtype groundtruth

model of Pascal3D+ [47].

The average rotation and shape errors for aeroplane

using symmetry and Manhattan on single image are

0.3210 and 0.6047, respectively5. These results show

that symmetry and Manhattan can give good results for

single image reconstruction. Indeed, the performance is

better than some of the structure from motion (SfM)

methods which use multiple images, see Tables 1 and

2. But this is not a fair comparison, because these 42

images are selected to ensure that all the Manhattan

axes are observed, while the SfM methods have been

evaluated on all the aeroplane images. We also illustrate

some reconstruction results in Fig. 8.

5 As there is no baseline method for comparison, we also
calculate the average rotation errors measured by averaged

geodesic distance 1
N

∑N
n=1 || log(Raligned

n
>
R∗n)||F/

√
2, which

represents the angle difference between two rotation matrices.
The results show that the rotation error is 4.1766 degree in
average.

9.2 Experiments on Multiple Images with Rigid

Deformation

In this section, we estimate the 3D structures of each

subtype and the orientations of all the images within

that subtype for aeroplane, bus, car, sofa, train, tv in

Pascal3D+ [47]. Note that Pascal3D+ provides a sin-

gle 3D shape for each object subtype rather than for

each object. For example, it provides 10 subtypes such

as sedan, truck for the car category, ignoring the shape

variation within each subtype. Thus, we divide the im-

ages of the same category into subtypes, and then input

the images of each subtype to our Sym-RSfM for the

experiments. The outputs for this problem is the com-

mon 3D structure for all the input images (i.e. for the

input subtype), and the different rotation matrix for

each image. In order to be consistent with our input,

we summarize both the shape and the rotation errors

according to each subtype.

Following [26], images with more than 5 visible key-

points are used. Also, as in [26], we augment the images

by left-right flipping for all the methods. The rotation

error and the shape error are calculated by Eq. (66).

The rigid SfM (RSfM) [42] and the more recent CSF

method [18], which does not exploit symmetry, is used

for comparison. Note that the CSF method [18] utilized

smooth time-trajectories as initialization, which does

not always hold in our application, because the input

images of our application are not from a continuous

video. Therefore, we also investigate the results from

CSF method with random initialization. We report the

CSF results with smooth prior as CSF (S) and the best

results with 10 random initialization as CSF (R).

The results (mean rotation and shape errors) on

aeroplane, bus, car, sofa, train, tv are shown in Tables

1 and 2, where the subtypes are indexed by Roman

numerals.

Tables 1 and 2 show that our method (Sym-RSfM)

outperforms the baseline methods for almost all cases.

The cases that our method does not perform as the
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Table 1 Rigid Deformation. The mean rotation errors for aeroplane, bus, car, sofa, train, tv, calculated using the images from
the same subtype (denoted by the Roman numerals) as input. CSF (S) means the CSF [18] results with smooth time-trajectories
initialization, CSF (R) means the best results of CSF [18] with random initialization in 10 runs.

aeroplane bus
I II III IV V VI VII I II III IV V VI

RSfM 0.56 1.19 0.76 0.82 0.96 1.22 0.81 0.68 0.73 0.56 0.48 0.63 0.93
CSF (S) 0.95 0.67 0.93 0.87 0.87 0.89 0.88 0.78 0.86 0.90 0.91 0.97 0.98
CSF (R) 0.94 0.79 0.93 0.91 0.95 0.98 0.97 0.77 0.89 0.89 0.92 1.08 1.03
Sym-RSfM 0.25 1.09 0.47 0.48 0.37 0.80 0.56 0.38 0.22 0.21 0.23 0.41 0.78

car sofa
I II III IV V VI VII VIII IX X I II

RSfM 0.94 0.79 0.72 0.69 0.81 0.89 0.63 1.08 0.68 0.70 1.03 0.89
CSF (S) 1.00 0.85 0.96 0.92 0.90 1.08 0.85 0.99 0.97 1.01 1.01 0.73
CSF (R) 0.93 0.87 0.89 0.83 0.91 0.76 0.86 1.02 0.88 0.74 0.89 0.77
Sym-RSfM 0.43 0.35 0.32 0.42 0.29 0.40 0.35 1.04 0.27 0.37 0.73 0.12

sofa train tv
III IV V VI I II III IV I II III IV

RSfM 0.89 1.36 1.44 1.45 1.69 0.90 1.39 1.11 0.64 0.56 0.43 1.43
CSF (S) 0.90 1.19 1.27 1.36 0.88 1.27 0.84 0.87 0.90 0.80 0.87 0.77
CSF (R) 0.97 1.09 1.15 1.26 0.91 0.77 0.94 0.90 0.93 0.82 0.86 0.92
Sym-RSfM 0.15 0.83 1.15 1.14 0.48 1.53 1.36 1.38 1.10 0.20 0.24 0.86

Table 2 Rigid Deformation. The mean shape errors for aeroplane, bus, car, sofa, train, tv, calculated using the images from
the same subtype (denoted by the Roman numerals) as input.

aeroplane bus
I II III IV V VI VII I II III IV V VI

RSfM [42] 0.44 1.17 0.52 0.29 0.76 0.54 0.61 1.29 1.27 1.16 0.97 1.52 1.21
CSF (S) 1.25 0.36 1.42 0.84 0.33 0.47 0.59 1.11 0.39 0.56 0.16 3.02 0.44
CSF (R) 0.25 0.44 0.34 1.40 0.58 1.73 0.69 0.99 1.06 1.33 0.88 1.94 2.00
Sym-RSfM 0.19 0.88 0.27 0.34 0.33 0.30 0.62 0.68 0.58 0.35 0.24 0.76 0.47

car sofa
I II III IV V VI VII VIII IX X I II

RSfM [42] 1.48 1.49 1.33 1.38 1.45 1.39 1.21 1.81 1.22 1.07 2.50 1.09
CSF (S) 1.06 2.33 1.15 1.17 1.36 1.17 1.03 1.10 2.03 0.99 1.78 0.24
CSF (R) 1.34 1.07 1.03 1.16 1.18 1.26 0.88 0.90 1.65 1.13 0.76 0.25
Sym-RSfM 1.03 0.96 0.95 1.07 0.89 1.00 0.81 1.66 0.88 0.71 2.27 0.22

sofa train tv
III IV V VI I II III IV I II III IV

RSfM [42] 1.49 1.60 3.44 2.56 1.68 0.39 0.28 0.22 0.23 0.88 0.64 1.77
CSF (S) 3.14 1.54 2.74 1.55 0.83 0.85 0.25 0.26 0.66 0.77 0.34 0.34
CSF (R) 1.82 1.19 1.42 1.20 1.05 0.37 0.24 0.17 0.22 0.97 0.55 0.36
Sym-RSfM 0.40 1.07 0.87 1.14 0.73 0.61 0.13 0.24 0.09 0.29 0.32 0.14

best may be because Pascal3D+ assumes the shapes

from objects within the same subtype are very similar

to each other, but this might be violated sometimes.

In summary, the good performance of our method is

due to exploiting the symmetry constraints, which is

an intrinsic property of most man-made objects.

9.3 Experiments on Multiple Images with Non-Rigid

Deformation

In this section, we construct the 3D keypoints for each

image using the non-rigid model. Firstly, we follow the

experimental setting in [26] and collect all images with

more than 5 visible keypoints, we also augment the im-

ages by left-right flipping. Then, we do 10 iterations

with rank 3 recovery to initialize the occluded/missing

data. In this experiments, we use 3 deformation bases

and set λ in Sym-EM-PPCA, i.e. in Eq. (61), as 1.

We tested our algorithm on Pascal aeroplane, bus,

car, sofa, train, tv based on the mean shape and ro-

tation errors as in Eq. (66). Unlike the rigid case, we

input all the images from the same category (e.g. car),

and the algorithm outputs different 3D structure and

rotation matrix for each image. In the non-rigid case,

we evaluate the rotation errors according to each image

and summarize them by category. But for the shape

results, as we lack the ground truth 3D annotations

for each image in Pascal3D+ (which only provides one

3D model for each subtype), therefore we evaluate the

shape errors according to each subtype.

The results are reported in Table 3. The results show

that our method outperforms the baselines in general.

But we note that our method is not as good as the base-

lines in some cases, especially for tv. The reasons might

be: (i) the orthographic/weak-perspective projection is

less accurate when the object is close to the camera.
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Table 3 Non-Rigid Deformation. The mean shape and rotation errors for aeroplane, bus, car, sofa, train, tv. The Roman
numerals indicates the index of subtypes for the mean shape error, and mRE is short for the mean rotation error. EP, PF,
Sym-EP, Sym-PF are short for EM-PPCA [44], PriorFree [12,13], Sym-EM-PPCA, Sym-PriorFree, respectively.

aeroplane bus
I II III IV V VI VII mRE I II III IV V VI mRE

EP 0.36 0.59 0.50 0.49 0.57 0.57 0.45 0.34 0.52 0.47 0.49 0.43 0.80 0.59 0.32
PF 0.99 1.08 1.13 1.15 1.22 1.10 1.11 0.52 1.62 1.56 1.75 1.59 2.09 1.70 0.47
Sym-EP 0.33 0.53 0.46 0.43 0.51 0.53 0.46 0.31 0.28 0.25 0.33 0.33 0.65 0.46 0.21
Sym-PF 0.57 0.76 0.84 0.76 0.73 0.61 0.79 0.46 0.69 0.68 0.74 0.74 0.99 0.82 0.35

car sofa
I II III IV V VI VII VIII IX X mRE I II III

EP 1.10 1.01 1.09 1.05 1.03 1.07 0.99 1.46 1.00 0.85 0.39 2.00 1.87 2.01
PF 1.76 1.67 1.76 1.77 1.65 1.79 1.67 1.57 1.70 1.42 0.86 1.71 1.41 1.46
Sym-EP 0.99 0.89 1.05 1.02 0.92 1.00 0.89 1.39 0.95 0.68 0.34 1.06 0.70 1.00
Sym-PF 1.74 1.41 1.70 1.48 1.69 1.58 1.43 1.69 1.52 1.30 0.79 1.04 0.74 1.04

sofa train tv
IV V VI mRE I II III IV mRE I II III IV mRE

EP 1.98 2.36 1.81 0.78 0.92 0.60 0.48 0.47 0.97 0.51 0.51 0.42 0.30 0.42
PF 2.02 2.66 1.64 1.36 1.97 0.52 0.49 0.45 1.02 0.57 1.01 0.97 0.66 0.80
Sym-EP 0.93 1.61 0.73 0.33 0.97 0.57 0.49 0.37 0.77 0.38 0.56 0.51 0.49 0.52
Sym-PF 0.96 1.13 1.58 0.89 1.43 0.58 0.44 0.45 1.02 0.60 1.08 1.12 0.20 0.75

Although all the methods used the same suboptimal

orthographic projection for these cases, it may deteri-

orate more on our model sometimes, since we model

more constraints. (ii) It might be because that the 3D

groundtruth in Pascal3D+, which neglects the shape

variations in the same subtype, may not be accurate

enough (e.g. it has only one 3D model for all the sedan

cars).

In addition, the results of the EM-PPCA based meth-

ods (Sym-EM-PPCA and EM-PPCA) are generally bet-

ter than those of the PriorFree methods (PriorFree and

Sym-PriorFree). Apart from the imperfect 3D annota-

tions in Pascal3D+, we hypothesize that this is due

to that (i) the Gaussian prior assumption in the EM-

PPCA based methods can possibly better represent the

input data. (ii) We only have a limited number of the

input keypoints, which leads insufficiency in the number

of the maximally allowed deformation bases6. (iii) The

post processing (i.e. , projection energy minimization)

is important. The EM-PPCA methods perform EM al-

gorithm to jointly optimize more parameters, which

generalize to MLE used the PriorFree methods, and

therefore, producing better results.

The performance for the non-rigid SfM in Table 3 is

sometimes lower than that for the rigid SfM in Tables 1

and 2. But note that they are not directly comparable

due to the difference in the input data, i.e. the non-rigid

SfM uses all the images from the same category (e.g.

car) as input, while rigid SfM only inputs the images

within the same subtype (e.g. sedan car). In fact, the

non-rigid SfM is a more difficult problem than the rigid

SfM, which assumes non-rigid deformation between the

6 As analyzed in Remark 10 and Eq. (38), the relationship
between the number of allowed deformation bases K and the
number of keypoint pairs P follows: K ≤ P/3.

input images and does not require additional subtype

labels.

10 Towards Practical 3D Object Structure

Reconstruction and Viewpoint Estimation

In this section, we discuss how to build a practical 3D

object structure reconstruction and viewpoint estima-

tion system in a fully automatic pipeline from an in-

put image. In our previous experiments, we used the

ground truth 2D keypoints as input to our algorithms,

which are (mostly) perfectly symmetric. However, the

imperfect annotations will inevitably arise when we use

features detectors to localize the keypoints. Therefore,

the experiments carried out in this section also demon-

strate the robustness of our algorithms, especially when

the input 2D annotations are not perfectly symmetric.

Firstly, we did a study to investigate what happens

if the keypoints are not perfectly annotated. We simu-

lated this by adding different amounts of Gaussian noise

to the 2D ground truth annotations and then re-did the

experiments. This was to ensure that our methods are

robust to the imperfectly symmetric annotations. The

results are shown in the supplementary material, which

demonstrates that the performances of all the methods

decrease overall as the amount of Gaussian noise in-

creases. Nevertheless, our methods still outperform our

baselines despite the noisy annotations. In other words,

these results suggest that our methods are robust to

imperfect annotations and hence suitable for practical

use.

But to go further, we implement a system where the

keypoints are extracted by features detectors, e.g. deep

nets [9], to yield a practical and automatic system, as
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Fig. 6 Keypoint localization by stacked hourglass network, where two hourglass network units are used (best view in color).

shown in Fig. 5. We only lack one important step, i.e.

how to localize keypoints with semantic meanings given

an image as input. Note that the semantic meanings

associated with the keypoints are necessary, as they are

required to locate the symmetric pairs (e.g. left wheel

- right wheel).

Fig. 5 The flowchart of the 3D structure reconstruction and
viewpoint estimation in practice.

Fortunately, the state-of-the-art stacked hourglass

network [36] satisfies our requirements. The stacked

hourglass network was originally introduced for human

pose estimation in order to localize the keypoints of

human bodies, such as neck, left elbow, left wrist, etc.

Each hourglass network unit is used to capture both

local and global cues for keypoint localization. It is de-

signed to have a symmetric bottom-up (encoder) and

a top-down (decoder) inference at different scales (rep-

resenting local and global information) and produces

multiple heatmaps as output. These heatmaps can be
resized to the same resolution of the input image, each

of which represents the probabilities of the location for a

specific keypoint over the whole image. The location of

each keypoint can then be obtained as the global max-

ima of the corresponding heatmap, this also enables to

determine the semantic meaning of each keypoint. Fi-

nally, [36] stacks multiple hourglass units to repeatedly

refine the features for more precise keypoints localiza-

tion.

It has been shown that the stacked hourglass net-

work also works well for object keypoint localization

[38]. Similar to [38], our stacked hourglass network in-

cludes two stacked hourglass network units, trained from

scratch by the 2D annotations from Pascal3D+ dataset

[47] with augmented annotations on ImageNet images.

The procedure for localizing keypoints using the stacked

hourglass network is shown in Fig. 6.

In the following, we conduct the experiments using

the keypoints localized by the stacked hourglass net-

work to enable practical 3D object structure reconstruc-

tion and viewpoint estimation. Note that the stacked

hourglass network can automatically detect and local-

ize the self-occluded keypoints, but it does not work

well on the objects which are occluded by other objects

or truncated objects, where parts are outside the image7.

Therefore, similar to [38], we filtered out the occluded-

by-others and truncated objects. Note that there is only

one image for sofa subtype VI after filtering out unde-

sirable objects, therefore we only conduct experiments

on sofa subtype I - V. In addition, the Pascal3D+

dataset may annotate inconsistently on different ob-

ject subtypes from the same category (e.g. there are

8 keypoints for CRT tvmonitors, but only 4 for LCD

ones), we use the common keypoints across different

subtypes for our experiments. This makes it infeasible

to conduct the experiments on tvmonitor, as the com-

mon 4 keypoints are co-planar, leading mathematical

degeneracy/failure for multiple algorithms. As a result,

we report the performance on aeroplane, bus, car, train

and sofa Subtype I - V in the following subsections.

10.1 Experiments on Multiple Images with Rigid

Deformation

We conduct the experiments on the rigid SfM prob-

lem with the same experimental setup as that in Sect.

9.2, except that the 2D keypoints are detected by the

stacked hourglass network and we do not use left-right

flipping augmentation here.

Tables 4 and 5 show the results (mean rotation and

shape errors) on aeroplane, bus, car, sofa, train, which

demonstrate that our Sym-RSfM method outperforms

the state-of-the-art methods in general for both mean

rotation and shape errors. Interestingly, the results in

Tables 4 and 5 for some subtypes are even better than

those in Tables 1 and 2 which used manually labeled

2D annotations (though they are not directly compa-

7 This is because the self-occluded information/features can
be recovered by the training images from a different view-
point, but the training data cannot exhaustively retain var-
ious occlusions introduced by other objects or various trun-
cated types.
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Table 4 Rigid Deformations with Hourglass Input. The mean rotation errors for aeroplane, bus, car, sofa, train, calculated
using the images from the same subtype (denoted by the Roman numerals) as input. CSF (S) means the CSF [18] results with
smooth time-trajectories initialization, CSF (R) means the best results of CSF [18] with random initialization in 10 runs.

aeroplane bus
I II III IV V VI VII I II III IV

RSfM 0.25 1.13 0.82 0.48 0.34 0.40 0.24 0.52 0.34 0.42 0.41
CSF (S) 0.93 0.67 0.89 1.01 0.89 0.92 0.82 0.32 0.17 0.16 0.12
CSF (R) 0.94 1.04 0.93 0.91 0.92 0.90 0.86 0.88 0.92 0.92 0.94
Sym-RSfM 0.16 1.03 0.62 0.35 0.27 0.32 0.20 0.82 0.88 0.87 0.92

bus car
V VI I II III IV V VI VII VIII IX

RSfM 0.53 0.37 0.39 0.25 0.29 0.23 0.27 0.36 0.30 1.30 0.28
CSF (S) 0.81 0.74 0.84 0.97 0.70 0.93 0.91 0.78 0.86 0.79 0.87
CSF (R) 0.73 0.69 0.93 0.87 0.87 0.85 0.87 0.76 0.83 1.03 0.88
Sym-RSfM 0.28 0.17 0.19 0.09 0.09 0.13 0.09 0.10 0.16 0.27 0.09

car sofa train
X I II III IV V I II III IV

RSfM 0.40 0.46 0.22 0.58 0.34 0.25 0.67 0.44 0.40 0.77
CSF (S) 0.88 0.95 0.79 1.26 0.42 0.42 0.91 0.72 0.86 0.94
CSF (R) 0.82 0.90 0.79 0.76 0.58 0.46 0.93 0.73 0.89 0.93
Sym-RSfM 0.18 0.46 0.15 0.37 0.13 0.38 0.39 0.32 0.21 0.63

Table 5 Rigid Deformations with Hourglass Input. The mean shape errors for aeroplane, bus, car, sofa, train, calculated
using the images from the same subtype (denoted by the Roman numerals) as input.

aeroplane bus
I II III IV V VI VII I II III IV

RSfM 0.27 1.04 1.24 0.62 0.24 0.41 0.31 1.04 0.81 0.91 0.98
CSF (S) 0.47 0.62 0.52 2.00 0.29 0.22 0.37 1.64 0.80 1.30 1.34
CSF (R) 0.18 0.71 0.39 0.34 0.34 0.21 0.35 1.35 1.13 0.92 1.01
Sym-RSfM 0.09 0.72 0.58 0.34 0.24 0.10 0.24 0.59 0.36 0.38 0.25

bus car
V VI I II III IV V VI VII VIII IX

RSfM 1.16 1.21 0.91 0.58 0.75 0.61 0.67 0.83 0.61 1.41 0.63
CSF (S) 1.22 1.02 0.89 0.29 0.51 0.67 0.44 0.79 0.36 0.81 0.19
CSF (R) 1.12 1.36 0.96 0.35 0.77 0.61 0.64 0.69 0.60 0.61 0.52
Sym-RSfM 0.52 0.40 0.23 0.10 0.14 0.07 0.14 0.19 0.14 0.27 0.07

car sofa train
X I II III IV V I II III IV

RSfM 0.78 0.59 0.28 0.73 0.58 0.60 0.90 1.43 0.74 1.24
CSF (S) 0.62 2.48 0.34 0.85 0.36 0.52 1.07 1.22 0.12 0.86
CSF (R) 0.70 0.51 0.36 0.63 0.53 0.48 0.90 1.76 0.96 1.37
Sym-RSfM 0.09 0.38 0.29 0.36 0.32 0.29 0.18 1.07 0.27 0.34

rable)8. The reason may be that the keypoint localiza-

tion network can automatically detect the self-occluded

keypoints, therefore Tables 4 and 5 contain much less

missing keypoints.

Figure 7 illustrates some reconstruction results from

the Sym-RSfM method. It demonstrates that our method

gives good reconstruction once the keypoints are well

localized.

We also observe that, in some cases, the reconstruc-

tions do not perfectly match the 2D annotations. This

is because, for rigid SfM, we estimate only one common

8 They are not directly comparable because (i) Tables 1
and 2 use 2D annotations from [6] (the same as those used
in [26]), while the keypoint localization network for Tables 4
and 5 is trained on 2D annotations from Pascal3D+ [47]. (ii)
We exclude the occluded-by-others and truncated objects in
Tables 4 and 5 (the same as those in [38]) because the stacked
hourglass network [36] does not produce satisfied results on
those images.

3D structure for all the input images (by assuming that

the images from the same subtype are only up to some

“fake” rigid deformation ambiguities). This imprecise

assumption leads to imperfect matches of 3D structure

and 2D annotations. This problem can be alleviated

in non-rigid SfM, where we estimate one 3D structure

for each object. We also summarize other failure cases

for the rigid SfM. Conversely, the rigid SfM algorithms

will not work well if the input keypoints are not well

localized, and if all the input keypoints are co-planar.

In addition, our method does not work well when the

object is very near to the camera. This is because that

the orthographic or weak-perspective camera assump-

tion will be violated in this case. We leave the algorithm

for the more precise (full) perspective camera as our fu-

ture work.
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Fig. 7 The illustrations for 3D shapes and viewpoints estimated by Sym-RSfM for aeroplane, bus, car, sofa, and train. The
first column denotes the reconstructed common 3D shapes in a normal viewpoint, where the Red, Green, Blue lines represent
left-right, front-end, top-bottom directions, and other directions are represented by the Black lines. Then, we show three
samples from each object in three double-columns. In each double-column, the first column is the reconstructed structures
annotated in the corresponding 2D images; the second column is the heatmaps, where the depths are represented by different
colors (best view in color).

Table 6 Non-Rigid Deformation with Hourglass Input. The mean shape and rotation errors for aeroplane, bus, car, sofa,
train. The Roman numerals indicates the index of subtypes for the mean shape error, and mRE is short for the mean rotation
error. EP, PF, Sym-EP, Sym-PF are short for EM-PPCA [44], PriorFree [12,13], Sym-EM-PPCA, Sym-PriorFree, respectively.

aeroplane bus
I II III IV V VI VII mRE I II III IV V

EP 0.20 0.53 0.46 0.42 0.49 0.45 0.39 0.25 0.51 0.44 0.61 0.47 0.94
PF 0.64 0.73 0.97 0.84 0.77 0.64 0.89 0.42 1.92 1.80 1.76 1.75 1.97
Sym-EP 0.20 0.50 0.45 0.42 0.47 0.45 0.40 0.25 0.26 0.20 0.38 0.28 0.70
Sym-PF 0.45 0.67 0.77 0.68 0.69 0.53 0.59 0.37 1.23 1.13 0.84 1.00 0.98

bus car
VI mRE I II III IV V VI VII VIII IX X mRE

EP 0.70 0.22 0.35 0.23 0.23 0.30 0.22 0.21 0.34 0.61 0.18 0.47 0.16
PF 2.01 0.22 1.42 1.02 1.22 1.09 1.09 1.00 1.24 1.25 1.11 1.12 0.41
Sym-EP 0.51 0.13 0.29 0.18 0.17 0.27 0.20 0.19 0.34 0.61 0.19 0.45 0.15
Sym-PF 1.45 0.48 0.78 0.47 0.58 0.74 0.67 0.50 0.68 0.83 0.64 0.79 0.25

sofa train
I II III IV V mRE I II III IV mRE

EP 0.63 0.58 0.56 0.26 0.71 0.43 0.53 0.83 0.56 1.08 0.47
PF 0.70 0.44 0.61 0.34 1.02 0.47 1.31 2.12 1.32 1.94 0.65
Sym-EP 0.59 0.65 0.56 0.32 0.65 0.43 0.61 0.63 0.43 0.94 0.45
Sym-PF 1.38 0.95 1.04 0.47 1.21 0.69 0.83 0.99 0.96 1.21 0.59

10.2 Experiments on Multiple Images with Non-Rigid

Deformation

We carry out the experiments on the non-rigid SfM

problem using 2D keypoints localized by the stacked

hourglass network. The experimental setup is the same

as that in Sect. 9.3, except that we do not augment the

images by left-right flipping.

The mean rotation and shape errors in Table 6 demon-

strate that the results for the symmetry algorithms (i.e.

Sym-EM-PPCA and Sym-PriorFree) are better than
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Fig. 8 The illustrations for 3D shapes and viewpoints estimated by Sym-EM-PPCA for aeroplane, bus, car, sofa, and train.
Then, we show three samples from each object in three column-triplets. In each column-triplet, the first column is the re-
constructed structures annotated in the corresponding 2D images; the second column is the heatmaps, where the depths are
represented by different colors; the third column is a normal view of the reconstructed 3D structures, where the Red, Green,
Blue lines represent left-right, front-end, top-bottom directions, and other directions are represented by the Black lines (best
view in color).

their non-symmetry counterpart (i.e. EM-PPCA and

PriorFree). It can also be seen that the performance

of the both PriorFree methods (PriorFree and Sym-

PriorFree) are generally lower than the EM-PPCA meth-

ods (i.e. EM-PPCA and Sym-EM-PPCA), the reasons

have been discussed in Sect. 9.3. In addition, some re-

sults in Table 6 are better than those in Table 3 with

manually labeled 2D annotations (though they are not

directly comparable), the reasons are the same as those

discussed in Sect. 10.1. Some reconstruction results from

the Sym-EM-PPCA method are illustrated in Fig. 8.

The non-rigid SfM is not likely to fail to match the

reconstructed structures and the 2D keypoints. This

is because that the non-rigid SfM reconstruct one 3D

structure for each image. But on the other hand, the

non-rigid SfM may fail when the deformation among

the input images are too severe. The other failure cases

are shared between the rigid and non-rigid SfM algo-

rithms: i) imprecise 2D annotations, ii) the input 2D

annotations are co-planar, iii) the violation of the or-

thographic camera assumption (e.g. when the object is

too close to the camera).

11 Conclusion

Symmetry and Manhattan properties are typically pos-

sessed by man-made objects [25, 39]. This paper shows

that symmetry, Manhattan and multiple images can be

combined together to obtain good quality performance

for 3D structure estimation. We first show that symme-

try can be exploited by a change of coordinates which

decompose the problem into estimating different com-

ponents of the 3D structure.

For the single image case, we show that symmetry

can be exploited, using our change of coordinates, pro-

vided Manhattan is used to estimate the camera param-

eters. This method is successful but has problems when

many keypoints are missing due to occlusion, which fre-

quently happens.

Hence we concentrate on multiple images. We show

that we can develop new factorization methods which

minimize energy functions (which assume that all the

keypoints are observed) exploiting symmetry by chang-

ing coordinates. These methods require identifying the

novel gauge ambiguities, inherent to factorization meth-

ods, and identifying strategies to solve for them. But

these approaches are limited because they do not work

if some of the keypoints are missing due to occlusion.

We refer to these energy functions, which assume all the

keypoints are observed, as surrogate energy functions.

To address the missing keypoints, we specify new

energy functions which take into account that partial

keypoints are observed. We can perform coordinate de-

scent on these energy functions, but without good ini-



24 Yuan Gao, Alan L. Yuille

tialization, the coordinate descent will not converge to

good results. So instead we develop methods for initial-

izing and updating the missing keypoints in order to

give good starting points for coordinate descent. More

specifically, we provide a simple method to initialize

the missing keypoints, and use factorization to mini-

mize the surrogate energy functions using the initial-

ized, or estimated, keypoints in order to obtain the 3D

structure and the camera viewpoints.

We develop algorithms for the rigid and non-rigid

cases. For the rigid case, our algorithm is based on

the classic SVD methods modified to deal with miss-

ing keypoints. We provide two algorithms for the non-

rigid case. The first is based on the prior-free methods

of [12,13] and the second is based on the work of [44].

Our experiments are carried out on Pascal3D+ dataset

[47]. They show that our single image reconstruction

method achieves good quality results provided sym-

metry and Manhattan can be identified with suitable

keypoints. The results also show that our symmetric

rigid structure from motion method, Sym-RSfM, and

symmetric non-rigid structure from motion methods,

Sym-EM-PPCA and Sym-PriorFree, all almost always

outperform the corresponding non-symmetric state-of-

the-art methods. To test the robustness of our method,

we add Gaussian noise to the keypoint locations and

show that our symmetric methods still perform well

(as described in the supplementary material).

We also extend our approach to natural images by

using an hourglass CNN [36] to localize the keypoints,

specify their semantic meanings (i.e. left wheel and right

wheel), and output the keypoint pairs. This complete

system works very well on the Pascal3D+ dataset, partly

because the hourglass gives good initialization for the

missing keypoints.

Our work can be extended in several directions. Firstly,

all of our current methods use an orthographic or weak-

perspective (i.e. orthographic plus a scaling) camera

model. We expect to obtain better performance if we

extend to a full perspective model, particularly for ob-

jects which are very close to the camera lens. Secondly,

this paper focuses on exploiting the intrinsic symmetry

and Manhattan properties of the objects, but uses a

relatively simple algorithm to initialize the missing key-

points. We will use more advanced occlusion recovery

methods as better initialization, such as [33]. Finally,

we will include additional object features, instead of

just keypoints, to better improve object 3D structure

reconstruction and camera viewpoint estimation.
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