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Abstract—Normal and visually-impaired zebrafish larvae have differentiable light-induced locomotor response (LLR), which is

composed of visual and non-visual components. It is recently demonstrated that differences in the acute phase of the LLR, also known

as the visual motor response (VMR), can be utilized to evaluate new eye drugs. However, most of the previous studies focused on the

average LLR activity of a particular genotype, which left information that could address differences in individual zebrafish development

unattended. In this study, machine learning techniques were employed to distinguish not only zebrafish larvae of different genotypes,

but also different batches, based on their response to light stimuli. This approach allows us to perform efficient high-throughput

zebrafish screening with relatively simple preparations. Following the general machine learning framework, some discriminative

features were first extracted from the behavioral data. Both unsupervised and supervised learning algorithms were implemented for the

classification of zebrafish of different genotypes and batches. The accuracy of the classification in genotype was over 80 percent and

could achieve up to 95 percent in some cases. The results obtained shed light on the potential of using machine learning techniques for

analyzing behavioral data of zebrafish, which may enhance the reliability of high-throughput drug screening.

Index Terms—High-throughput drug screening, zebrafish, machine learning, classification, light-induced locomotor response

Ç

1 INTRODUCTION

ZEBRAFISH, Danio rerio, is a freshwater tropical fish. The
fish are small and are easily reared in small aquariums.

Sexually mature fish have high fecundity and a pair of
healthy adult fish can lay up to 200 eggs at weekly intervals.
Moreover, the larval fish develop rapidly and are highly
transparent, which allow for easy observation of develop-
mental process (for a comprehensive review, see Zhang
et al. [1]). In addition, its light-sensitive tissue in retina is
anatomically comparable to human [2]; hence, zebrafish is
an excellent model for eye disease and eye drug discovery
[1], [2], [3], [4]. A number of fish genetic mutants that affect
vision has been identified and/or generated over the years.
The visual defects in these mutants affect their response to

light stimulus, and result in an alteration of their locomotor
response. Taken together, these advantages have made the
zebrafish amenable to high-throughput behavioral studies
and opened up a tremendous opportunity to rapidly iden-
tify chemicals that may alter light-induced behavior [5].
Recently, two light-induced behavioral assays have been
developed and used to characterize 14,000 and 4,000 drugs
on neural [6] and sleeping behavior [7], respectively.

During the course of their investigation, Emran and
colleagues further customized this light-induced behavioral
assay as shown in Fig. 1 and demonstrated that visual
mutants had a specific alteration during the acute phase of
light-transition [8], [9]. This acute response, also known as
the visual-motor response (VMR), is an eye-driven startle
response triggered by a rapid onset or offset of light stimu-
lation [9], [10]. VMR is largely attenuated in genetic mutants
that have defects in vision, and it is completely abolished in
a mutant that fails to develop an eye and in larvae after
removal of the eye ball [9], [10]. Due to this unique relation-
ship between VMR and vision, it has been proposed that
the VMR assay can be used to evaluate drug therapies on
different fish genetic mutants to expedite the discovery of
eye drugs [1].

To this end, Zhang et al. have recently utilized the VMR
assay to demonstrate the visual benefit of Schisandrin B
(Sch B), an active ingredient of a traditional Chinese medi-
cine Fructus Schisandrae [11], on a visual mutant pde6cw59

[12], [13] (refer to as pde6c hereafter). The results from
Zhang et al. indicate that Sch B could enhance the VMR
response of pde6c under the light-ON stimulus, supporting
the potential eye benefits of Sch B [10], [14]. In humans,
mutations in pde6c cause similar phenotypes in the eyes as
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in the zebrafish mutant. Thus, the study of drug effects on
the VMR of various zebrafish visual mutants can poten-
tially facilitate the discovery of novel treatments for
patients.

There are multiple implementations of the light-
induced behavioural assays in the literature [9], [15]. The
differences in the settings led to controversy in the visual
contribution to the VMR. In this work, our usage of VMR
and experimental collection of data are restricted in the
same configurations established by Emran et al., which
will be discussed in Section 4.3. In order to avoid confu-
sion, we describe this (Emran’s) collection scheme [9] as
an assay for measuring light-induced locomotor response
(LLR). The systematic analysis of this LLR output is
essential for determining the visual components and real-
izing the potential use of VMR for drug screening for
visual impairment. We characterized the LLR results
obtained from our recent VMR study using normal wild-
type (WT) and visually-impaired mutant (pde6c) zebrafish
larvae in order to elucidate the influence of genetic muta-
tions on the LLR [10], [14]. However, biological data are
intrinsically noisy and the individual variation may mask
the biological difference. To maximize the detection of
the true biological effect, these biological data were often
averaged to eliminate the noise or random movements
[7], [8], [9], [16].

With the rapid development of computation biology,
various machine learning methods are implemented to
assist multi-dimensional behavioral data analysis for spe-
cific purposes. For example, advanced studies in machine
vision investigated the animal behavioral data by categoriz-
ing them into discrete behavioral pattern. Kabra et al. devel-
oped an interactive tool to annotate the animal behavior
automatically by Gentle AdaBoost [17]. Mirat et al. used
support vector machine (SVM) to categorized the episodes
of movement for zebrafish into several maneuvers, e.g.,
slow forward swim, routine turn and escape [18]. Rather
than the widely used spatio-temporal features, Burgos-
Artizzu et al. proposed trajectory features to represent
the video data for behavioral pattern recognition using
AdaBoost [19]. On the other hand, hidden Markov model
(HMM) [20] was also implemented to investigate the under-
lying states by observed animal behavior. Franke et al. used
HMM to analyze the movements of caribous and to predict
their behavioral states such as bedding, feeding and relocat-
ing [21]. HMM was also used to study the behavioral
change before and after formaldehyde treatment in zebra-
fish to detect the change of underlying state in pre-defined
behavioral pattern [22], [23].

Instead of categorizing behavior into predefined patterns
of machine vision based behavior analysis [17], [18], [19],
biological sample screening aims to classify different biolog-
ical samples according to their difference in behavior [1], [5],
[6], [7], [8]. Additionally, being different from machine
vision based research which use videos as input [17], [18],
[19], the input of biological sample screening analysis is a
specific time-series behavioral curve generated by specific
metric (e.g., velocity) [1], [5], [6], [7], [8]. In a pioneering
drug screening study by zebrafish, Rihel et al. used Locomo-
tor activity curve recorded by Zebrabox [24] to extract some
behavioral activity features, and then applied clustering
methods to study the similarity and dissimilarity in the
effectiveness of different drugs according to the change in
behavior [7]. Nevertheless, the behavioral data in [7] were
still averaged before feature extraction, which left individ-
ual differences unaddressed. In view of the limitations of
the current statistical studies [25] and the benefits of utiliz-
ing machine learning techniques in biological data analysis
[26], a novel machine learning based framework is intro-
duced in this study to model the behavioral data of individ-
ual zebrafish for high-throughput screening.

In our proposed machine learning framework, LLR of
WT and pde6c could be studied individually. The influence
of different batches, i.e., embryos collected from different
heterozygous parents, could also be identified by our meth-
ods. Similar to [7], the behavioral data used in our study is
also time-series curve recoded by Zebrabox [24], and data
was labeled in advance to build the model. Discriminative
features were first extracted from the preprocessed data.
After that, supervised learning algorithms, including K
nearest neighbor (KNN) [20], Naive Bayes [27], SVM [28]
were implemented for classification. In addition, we also
conducted an unsupervised learning algorithm, expecta-
tion-maximization algorithm with Gaussian mixture model
(EM-GMM) [20], with the labeled data utilized for
initialization.

The contribution of this paper is fourfold:

� We developed a machine-learning framework for
quantifying LLR of different zebrafish subtypes.

� We demonstrated the importance of LLR, especially
the acute phase, in identifying visually-impaired
larvae.

� The novel framework allows us to screen pde6c
mutants efficiently with relatively simple experimen-
tal preparations.

� Through our framework, the zebrafish larvae that
do not respond differently from the majority of
the larvae from the same class can be automati-
cally identified as outliers for further experimental
characterization.

2 METHODOLOGY

2.1 Zebrafish Maintenance

All fish lines used in this study were originated from the
strain AB [29] and maintained according to standard pro-
cedures [30]. Two genotypes, WT and pde6c, were used.
For the WT, the embryos were collected from two differ-
ent batches of adults which were designated as #1 and

Fig. 1. Conceptual diagram for the timeline of light stimuli in the LLR
assay. The larvae were dark-adapted in the Zebrabox for 3.5 hours
immediately before the experiment, then the assay lasted 3 hours with
light stimuli: ON-OFF-ON-OFF-ON-OFF. Each stimulus was sustained
for 30 min.
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#2. And all pde6c embryos were collected from the hetero-
zygous parents from batch #2. The WT embryos collected
from #2 were cousins of the pde6c embryos collected from
#2, while the WT embryos collected from #1 were from
an unrelated family. The two genotypes were robustly
discriminated by the lack of optokinetic response (OKR),
a stereotypic eye reflex in response to any movements in
the environment [31], [32], in the pde6c larvae [12]. Using
genotype-batch notation, three classes of zebrafish larvae
were used: WT-#1, WT-#2 and pde6c-#2, which are abbre-
viated as W1, W2, P2 in Section 4 for drawing the result
figures. The nomenclature of fish and their relationship
are summarized in Table 1. In each class, 24 larvae were
used. The embryos used for the experiments were col-
lected and raised at 28�C in E3 medium [33]. All proto-
cols were approved by the Purdue Animal Care and Use
Committee.

2.2 Behavioral Data Collection

The behavioral data were collected by Zebrabox (Viewpoint
Life Sciences) [24]. Before the assay, all the zebrafish larvae
were accommodated in a 96-well plate for overnight (In
this study, 72 wells are filled with zebrafish larvae while
24 wells are empty). Immediately before the experiment, the
larvae in the plate were dark-adapted in the Zebrabox for
3.5 hours. During the assay, a bright light stimulus was
given in the following sequence: ON-OFF-ON-OFF-ON-
OFF, in which each stimulus lasted for 30 min, as illustrated
in Fig. 1. The movement of the larvae was detected by an
infrared camera that captured videos in 30 frames per sec-
ond. As the metric of the movement, burst duration was
defined and detected by the following extraction scheme.
First, a detection sensitivity was set to compare two succes-
sive frames to define active pixels, i.e., the pixels which have
a change in grey level more than the detection sensitivity. In
this study, the detection sensitivity was set at 6. These active
pixels represent the movement of a larva in successful
frames. And then, a burst threshold (BT) was set to define
actual movement (i.e., burst) when the number of active pixels
between two frames was larger than a predefined value.
Finally, the burst duration was defined as the summarized
actual movement duration per second, i.e., the fraction of sec-
ond a larva actually move (bin size ¼ 1 s). In this study, we
tested two BTs: 0 and 4. For BT ¼ 0, all movements are
regarded as the actual movement, while for BT ¼ 4, small
movements lower than 4 active pixels were not regarded as
the actual movement. The latter value, i.e., BT ¼ 4 pixel, was
used in previous studies [7], [9]. This arrangement allowed
us to determine the contribution of the information from the
small movements in classification. And we used this scheme

to collect larval movement data at five days post-fertiliza-
tion (dpf) and 8 dpf.

2.3 Machine Learning Framework

The Machine Learning Framework for data analysis consists
of three stages: pre-processing, feature representation and
classification. Most of the pre-processing in our work has
been done by Zebrabox. For instance, various threshold
parameters discussed above were used to filter out the
noise. Other necessary pre-processing will be discussed in
Section 4. Here, we focus on feature representation and clas-
sification. Feature representation aims to use small amount
of features to accurately describe the data set, so that large
inputs for algorithm in classification stage, which may lead
to curse of dimensionality, can be avoided. And by using
the features from former stage, classification is used to dis-
tinguish different samples into groups.

2.3.1 Feature Representation

We compared two candidate feature representation meth-
ods, i.e., Symbolic Aggregate approXimation (SAX) features
used in computer science for time-series analysis [34], and
the features used in the pioneering work by Rihel et al. SAX
features represent the histogram of segmentally coded,
symbolized time-series curve as features, where the symbol-
ized curve is obtained by discretizing the original time-
series data. And The feature set used by Rihel et al. consists
of empirically selected metrics of the activity curve by the
biologists [7]. Note that although Rihel’s feature set was
designed for a much longer period (24 hours for each rest
+wake phases) than ours (1 hours for each ON+OFF stim-
uli), the bin size of Rihel’s collection scheme is 1 min while
ours is 1 second. Thus, the durations of Rihel’s assay and
ours are comparable when considering the total number of
bins, which makes Rihel’s feature set as a candidate feature
set for our assay. Classification tested on our zebrafish
behavioral data using the feature sets extracted by Rihel’s
method [7] and SAX [34] indicates that features used by
Rihel et al. offered best accuracy. Considering the wake/
rest phase of Rihel’s assay is also triggered by light ON/
OFF, the result demonstrates that Rihel’s features are sensi-
tive to light changes, and they are suitable to represent our
zebrafish activity curve, even though this feature set was
originally proposed to study rest/wake phase. In this paper,
based on the work by Rihel et al. [7], the extended feature
set in Table 2 is extracted from both light-ON and light-OFF
stimuli. Thus, for each zebrafish in each ON-OFF trial, there
are 20 features in total.

Rest bout corresponds to the period with continual 1-sec-
ond bins when zebrafish larvae do not move, i.e., the contin-
uous bins of burst duration ¼ 0. And the opposite case is

TABLE 1
Relationship of Different Fish

The nomenclature of them are genotype-batch notation.

TABLE 2
Features Used
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defined as active bout, as illustrated in Fig. 2. Sample entropy
is a widely applied measurement of complexity and regu-
larity of biological time series [35].

2.3.2 Classification

Both unsupervised and supervised learning methods were
used in this study. They are: 1) K Nearest Neighbor (KNN)
classifier; 2) Naive Bayes classifier; 3) Support Vector
Machine (SVM); 4) Expectation-Maximization algorithm
with Gaussian Mixture Model (EM-GMM). The former 3
methods are supervised learning methods. While the latter
one, EM-GMM, is an unsupervised learning method which
can be incorporated with label information for initialization.

The neighbor parameter K ¼ 3 of KNN classifier [20]
was chosen as it was neither too global nor too local. The
standard version of Naive Bayes classifier as described in
[27] has been used in our experiment. For SVM method,
a“soft” margin SVM, C-SVM [20], [27], with Radial Basis
Function (RBF) kernel is used to gain a non-linear classifica-
tion. The coefficient of slack variables C and the kernel
width parameter g is set to 2 and 0.125. A free C++ library
LIBSVM is available in [28]. For EM-GMM [20], to avoid
overfitting, the mean mm and variance s2

m of each Gaussian
were fixed as initialization by the labeled data, only the
prior of each Gaussian pm was updated.

3 RESULTS

The proposed framework was implemented to identify indi-
vidual activity profiles of different genotypes and/or
batches. In order to investigate the effect of LLR under light
stimulus, the baseline activity after a prolonged dark adap-
tation was collected from the last 30 min of the initial 3.5-
hour dark phase in Fig. 1 as control.

3.1 Evaluation Metric

Ten-fold 500 times cross validation was used for generating
training sets and validation sets for supervised methods
KNN, Naive Bayes and SVM. For unsupervised method
EM-GMM, the algorithm was initialized by the mean of the
training set from the cross validation to cluster the corre-
sponding validation set.The evaluation metric is the classifi-
cation accuracy, as (1):

accuracy ¼ # correctly predicted samples

# total testing samples
� 100%: (1)

3.2 Classification Accuracy

To examine the classification accuracy using only baseline
activities without light stimulus, the last 0.5-hour of the
3.5-hour dark adaptation data were used for classification.
And for LLR analysis, The data obtained from 3 ON-OFF
trials were averaged as the input of the classification algo-
rithms, as illustrated in Fig. 3. To identify the significant
component of LLR, the data were segmented in three differ-
ent durations: the first minute, the first two minutes as well
as the whole 30-min LLR after the change in stimulus for
testing. Since similar results were obtained among the four
classification methods, for precision, only the classification
results for 8 dpf using all 30-min LLR data were summa-
rized here to illustrate the performance of all four methods
presented in Fig. 4. Considering SVM could slightly outper-
form others for most cases (especially for classifying geno-
types of same batch, i.e., WT-#2 versus pde6c-#2), and it is
easy to implement (free libraries are available such as
LIBSVM [28]), we only illustrated SVM results hereafter.
For the complete results of the four methods, please refer to
supplementary data, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TCBB.2014.2306829.

The SVM results of 5 and 8 dpf zebrafish larvae using
both baseline activity and LLR are shown in Fig. 5. The
results demonstrated that the accuracy could achieve as
high as 95 percent (the classification accuracy WT-#1 versus
pde6c-#2 using first 1-min LLR, as the highest value of BT ¼
0 at Row 1, Column 2 of Fig. 5). And for all the cases in
zebrafish genotype classification using LLR, the accuracy is
over 80 percent.

4 DISCUSSION

This paper presented the implementation of various
machine learning methods for analyzing the behavioral

Fig. 2. Illustration of key features used.

Fig. 3. Conceptual illustration of data extracted from each individual zebrafish for different classification schemes.
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data of zebrafish larvae by individual. The behavioral data
used in our work is named as LLR to avoid confusion
by different VMR measuring schemes of Erman [9] and
Fernandes [15]. We tested our methods on zebrafish larvae
of two age groups, which consisted of three classes in each
group. The experimental results indicate that our machine
learning methods are efficient and effective. The accuracy
can reach over 80 percent in general with the highest up to
95 percent for classifying zebrafish larvae of different geno-
types. Note that although the following discussion are
based on SVM results as Fig. 5, same conclusion can
be deduced from the other three methods because they
share similar classification results.

4.1 Importance of Developing an Efficient Method
for Mutant Screening

Many visual mutants are recessive in nature. For example,
the pde6c mutant used in this study is a recessive mutant.
These recessive mutants, which comprise 25 percent of a
cross of heterozygous parents, have to be first identified
before any drug study can be conducted. While both alleles

of the gene are mutated in these individuals, these visual
mutants often do not have any obvious morphological
defects and this precludes an easy identification of them.
Currently, they have to be identified individually based on
pre-inserted reporter genes and/or optokinetic response,
which can be extremely inefficient to implement in large-
scale studies. By the behavioral models of mutants built
with the machine learning method, new individual mutants
can be identified automatically in parallel by a single VMR
assay. Thus, the computational algorithms developed by us
can significantly facilitate the genetic screening and in turn
drug screening.

4.2 The Benefits of the Proposed Classification
Framework to Drug Screening

In the current implementation of the LLR for drug screen-
ing, the behavioural profiles were averaged according to
one main parameter (e.g., the genotype of normal and
mutant samples) to investigate their mean differences.
Instead, our proposed method, which analyzes individual
behavioral data, would facilitate the determination of the

Fig. 4. Classification results of 8 dpf zebrafish larvae using 30-min LLR. Activities of both BT¼ 0 and BT¼ 4 pixel were analyzed. We used four differ-
ent classification methods, as bars from left to right: 3 Nearest Neighbor (3NN), Naive Bayes (NB), Support Vector Machine (SVM) and Expectation-
Maximization algorithm with Gaussian Mixture Model (EM). In addition, 4 different classification problems were tested, in which W1, W2, P2 denoted
WT-#1, WT-#2, pde6c-#2, respectively.

Fig. 5. SVM classification results using both Baseline and LLR data of 5 dpf (Top Row) and 8 dpf (Bottom Row) zebrafish larvae. For classification
using baseline data, the activities recorded in the last 30 min of the initial 3.5-hour dark period before the first light-ON stimulus was used as input.
While for LLR classification, three different amounts of data were used, i.e., first 1-min, first 2-min and all 30-min LLR data. Activities of both BT = 0
and BT ¼ 4 pixel were analyzed. Four different classification problems were tested, as the four subfigure columns. The other parameters are the
same with Fig. 4.
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most useful drugs by identifying those making mutants
resume similar LLR profile as the healthy controls. Our clas-
sifiers would be also an important first step to grouping
similar drugs by the LLR of treated mutants using a rela-
tively simple experimental setup. This in turn would facili-
tate the determination of unknown drug action through the
known drugs with similar LLR profiles. In addition, our
method can efficiently identify outliers that behaved differ-
ently from other typical zebrafish in the same treatment
group for further neurobiological analysis. These outliers
may carry other natural genetic variations/single nucleo-
tide polymorphisms that act as a modifier of the drug
response. The identification of these individuals may facili-
tate the further investigation of the drug action.

4.3 The Relationship between VMR and LLR

The VMR was first introduced by Emran and colleagues to
demonstrate the acute phase of light-transition that would
cause a specific alteration of visual mutants [8], [9].
Recently, Fernandes and colleagues attempted to character-
ize the neurological basis of photokinesis and claimed that
there are two additional non-visual components of VMR
including inputs from pineal gland and a region in the
hypothalamus [15]. In particular, they showed that an eye-
less mutant chokh and eye enucleation would not completely
abolished VMR in normal larvae while Emran et al., showed
that the VMR was abolished in the same chokh mutant [9].
However, it should be noted that there are major differences
between the data collection and summarization in these
studies. In particular, Fernandes et al., calculated mean dis-
placement per minute while Emran et al., calculated mean
fraction of movement per second. In other words,
Fernandes’ collection approach summarized the slow
response to light stimuli while Emran’s approach was used
for capturing fast response, which is more compatible for
measuring visual startle. This is likely the reason why the
chokh mutant did not have VMR in Emran’s study. In addi-
tion, non-visual contribution to locomotor response is by
definition not “visual” motor response; thus, we restrict our
usage of VMR and experimental collection of data in the for-
mat established by Emran et al. (as shown in Fig. 1). Since in
this collection scheme [9], the stimulus is changed every 30
mins, it is likely that non-visual contribution of locomotor
response would play a role in the later phase of the stimu-
lus. In other words, one would expect the time immediately
after light stimuli change would be primarily visual-driven,
while the full 30-min data after light stimuli change would
be both visual and non-visual driven. Thus, we describe the
behaviour measured by the collection scheme in Fig. 1 as
light-induced locomotor response (LLR), which acknowl-
edges the fact that the collection scheme would detect loco-
motor behaviour comprises visual and non-visual inputs.

4.4 Significance of Using LLR to Identify WT and
pde6c Zebrafish

Comparing the classification results using the baseline data
alone, the classification accuracy using 30 min LLR data
achieved the highest increase to more than 40 percent, as
shown between the first bar and the last bar of BT = 0, in
Row 2, Column 3 of Fig. 5. And this increase is more

significant in 8 dpf zebrafish. Moreover, by using LLR data,
the classification of different genotypes can be carried out
with over 90 percent accuracy.

4.5 The Influence on Identifying WT and pde6c
Zebrafish by Different Amount of Behavioral
Data After Light Stimulus Change

Fig. 5 also shows that the classification of different geno-
types using data collected from different durations after
light stimulus change were not significantly different from
each other. It demonstrates that the early component imme-
diately after stimulus change (i.e., the first 1-min LLR) is the
most important for classification. Since the pde6c used in
this study is a visual mutant, this further implies that the
early component is primarily vision driven. This observa-
tion corroborates the empirical experience that the VMR is
an acute response of the LLR.

4.6 The Optimal Burst Threshold for Classification

Classification results were different for data extracted from
different BTs. A low BT allowed small movements to be
extracted, but such movements were filtered out when a
higher BT was set. High BT was often used to capture the
major effect of drug treatment or to identify different geno-
types [7], [9].

However, our results shown in Fig. 5 indicate that activ-
ity profiles collected with BT ¼ 0 generally provide better
discriminative power. This indicate that potentially useful
information can be neglected by filtering out noise with BT
¼ 4. Thus, BT ¼ 0 is likely a more optimal setting for classifi-
cation studies like ours.

4.7 The Necessity of Matching Controls

Our observations also indicate the importance of using
appropriate matching controls to maximize the discrimina-
tive power of the visual-behaviour analysis. For example,
WT-#1 and WT-#2 are both normal larvae and yet there are
instances that they could be classified fairly up to 80 percent
accurate with our algorithms (Fig. 5, Row 1, Column 1). In
addition, WT-#2 is genetically more related to pde6c-#2 as
they are cousins, while WT-#1 is not. It can be inferred that
(1) WT-#1 would be easier to be differentiated from pde6c-
#2, i.e., the accuracy of classification of WT-#1 and pde6c-#2
was generally high, especially for 5 dpf zebrafish (Row 1,
Column 2 of Fig. 5, 95 percent); (2) WT-#2 would be intrinsi-
cally harder to be differentiated from pde6c-#2 using base-
line activity profile. Column 3 of Fig. 5 indicate that the
accuracy using baseline activity are 66 percent for 5 dpf
zebrafish and 45 percent for 8 dpf; and (3) WT-#2 should be
robustly separated from pde6c-#2 if the part of the activity
profile that is highly influenced by vision is used. This
agrees with our result in Column 3 of Fig. 5. Once we used
the 1-min LLR data for classifying WT-#2 and pde6c-#2, the
classification accuracy substantially increased (66 to 89 per-
cent for 5 dpf, 45 to 85 percent for 8 dpf). Additionally,
using longer duration data only provided a modest increase
in classification accuracy for WT-#2 and pde6c-#2. Since
pde6c is a visual mutant, this observation indicates that the
1-min LLR (i.e., the VMR as defined by Emran et al. [9]),
which supposedly captures the visual startle efficiently,
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provides a good discriminative power for analyzing visual
mutants. Our results suggested that analysis conducted
between visual mutants and closely related WT controls by
VMR is critical for screening drugs that may affect vision.

4.8 Identification of Outliers

The outliers detected by our methods, which can be used for
further neurobiological study, are illustrated in the follow-
ing. As stated above, the results from data extracted by
lower threshold were generally more accurate, and different
amount of data do not influence much for the classification.
Thus, we used 30-min data extracted from BT = 0 to illus-
trate inliers and outliers detected from our framework. To
alleviate the impact caused by the difference in algorithms,
individuals that all four algorithms cannot correctly classify
were indicated as outliers, while the remaining was consid-
ered as inliers. For instance, Fig. 6 demonstrated the light-
OFF activity profiles of zebrafish classed as True WT-#2,
True pde6c-#2, False WT-#2 and False pde6c-#2, for 8 dpf
zebrafish larvae, respectively.

5 CONCLUSION

In this paper, we proposed an integrated machine learning
framework for behavior based individual zebrafish screen-
ing of different genotypes and different batches. The behav-
ioral data of individual zebrafish was recorded as time-
series curve according to its burst duration. After extracting
the features from the behavioral curve, both supervised and
unsupervised learning methods, including KNN, Naive
Bayes Classifier, SVM and EM-GMM, were used to classify
different zebrafish types. The experimental results show
that our framework can accurately classify different zebra-
fish, with the highest accuracy up to 95 percent for classify-
ing zebrafish from different genotypes. We also discussed
the effectiveness of LLR for identifying WT and pde6c zebra-
fish, the benefits of using lower burst threshold in pre-proc-
essing, as well as the significance of the acute phase of LLR.

In particular, our results suggest that LLR is imperative
for the classification of normal zebrafish and zebrafish with
visual defects. We also showed that first minute data after
the light change was sufficient to capture the light-induced
movements initiated by the eyes and would give sufficient
accuracy for classifying visual mutants. Additionally, our
results show that activity data collected with burst thresh-
old at 0 would give the best discriminative power between
different genotypes. In addition, it is essential to use match-
ing controls that are closely related to visual mutant maxi-
mize the utility of the difference of the visual behavior for
classification and drug study. In summary, our framework
has laid down an important foundation to use visual behav-
iour, particularly VMR, for high-throughput drug screening.

ACKNOWLEDGMENTS

This work was supported by a grant from the Research
Grants Council of the Hong Kong Special Administrative
Region, China (Project no. CityU 123312) and a grant from
City University of Hong Kong (Project no. 7003013). Y.F.
Leung was partially supported by a collaborative fund from
the JSIEC.

REFERENCES

[1] L. Zhang, L. Chong, J. Cho, P.-C. Liao, S. Feichen, and Y.F. Leung,
“Drug Screening to Treat Early-Onset Eye Diseases: Can Zebrafish
Expedite the Discovery?” The Asia-Pacific J. Ophthalmology, vol. 1,
no. 6, pp. 374-383, 2012.

[2] J.M. Fadool and J.E. Dowling, “Zebrafish: A Model System for the
Study of Eye Genetics,” Progress in Retinal and Eye Research,
vol. 27, no. 1, pp. 89-110, 2008.

[3] J. Gross and B. Perkins, “Zebrafish Mutants as Models for Con-
genital Ocular Disorders in Humans,” Molecular Reproduction and
Development, vol. 75, no. 3, pp. 547-555, 2008.

[4] A.C. Morris, “The Genetics of Ocular Disorders: Insights from the
Zebrafish,” Birth Defects Research Part C, Embryo Today: Rev.,
vol. 93, no. 3, pp. 215-228, 2011.

[5] C.A. Lessman, “The Developing Zebrafish (Danio rerio): A Verte-
brate Model for High-Throughput Screening of Chemical
Libraries,” Birth Defects Research Part C, Embryo Today: Rev.,
vol. 93, no. 3, pp. 268-280, 2011.

[6] D. Kokel, J. Bryan, C. Laggner, R. White, C.Y.J. Cheung,
R. Mateus, D. Healey, S. Kim, A.A. Werdich, S.J. Haggarty,
C.A. Macrae, B. Shoichet, and R.T. Peterson, “Rapid Behavior-
Based Identification of Neuroactive Small Molecules in the
Zebrafish,”Nature Chemical Biology, vol. 6, no. 3, pp. 231-237, 2010.

[7] J. Rihel, D.A. Prober, A. Arvanites, K. Lam, S. Zimmerman, S.
Jang, S.J. Haggarty, D. Kokel, L.L. Rubin, R.T. Peterson, and A.F.
Schier, “Zebrafish Behavioral Profiling Links Drugs to Biological
Targets and Rest/Wake Regulation,” Science, vol. 327, no. 5963,
pp. 348-351, 2010.

[8] F. Emran, J. Rihel, and J. Dowling, “A Behavioral Assay to Mea-
sure Responsiveness of Zebrafish to Changes in Light Intensities,”
J. Visualized Experiments, no. 20, pp. 1-6, 2008.

[9] F. Emran, J. Rihel, A.R. Adolph, K.Y. Wong, S. Kraves, and J.E.
Dowling, “OFF Ganglion Cells Cannot Drive the Optokinetic
Reflex in Zebrafish,” Proc. Nat’l Academy of Sciences USA, vol. 104,
no. 48, pp. 19 126-19 131, 2007.

[10] L. Zhang, L. Chong, J. Cho, W. Zhong, K.M. Ko, and Y.F. Leung,
“Schisandrin B Enhanced the Visual Motor Response and Pro-
tected the Rod Photoreceptors of the Zebrafish pde6c Retinal
Degeneration Mutant,” submitted for publication, 2013.

[11] R. K.-M. Ko and D.H.F. Mak, “Schisandrin B and Other Dibenzocy-
clooctadiene Lignans,” Herbal and Traditional Medicine: Biomolecu-
lar and Clinical Aspects, pp. 289-314, CRC Press, 2004.

[12] G. Stearns, M. Evangelista, J.M. Fadool, and S.E. Brockerhoff, “A
Mutation in the Cone-Specific pde6 Gene Causes Rapid Cone Pho-
toreceptor Degeneration in Zebrafish,” J. Neuroscience, vol. 27,
no. 50, pp. 13 866-13 874, 2007.

Fig. 6. Light-OFF activity profiles of inliers and outliers of 8 dpf zebrafish
WT-#2 versus pde6c-#2, where BT was 0 and behavioral data length
was 30 min. The activity was measured by Burst Duration, which has
been defined in Section 2. The light-OFF stimulus was given at time 0.

GAO ET AL.: A HIGH-THROUGHPUT ZEBRAFISH SCREENING METHOD FOR VISUAL MUTANTS BY LIGHT-INDUCED LOCOMOTOR... 699



[13] A. Lewis, P. Williams, O. Lawrence, R.O.L. Wong, and S.E.
Brockerhoff, “Wild-Type Cone Photoreceptors Persist Despite
Neighboring Mutant Cone Degeneration,” J. Neuroscience, vol. 30,
no. 1, pp. 382-389, 2010.

[14] Y.F. Leung, L. Zhang, L. Chong, J. Cho, and K.M. Ko, “Schisandrin
B Improved the Visual Moter Response and Preserves Photore-
ceptors in the Zebrafish pde6c Cone Dystrophy Mutant,” Investiga-
tive Ophthalmology and Visual Science, vol. 54, p. 1943, ARVO E-
Abstract, 2013.

[15] A.M. Fernandes, K. Fero, A.B. Arrenberg, S.A. Bergeron, W. Dri-
ever, and H.A. Burgess, “Deep Brain Photoreceptors Control
Light-Seeking Behavior in Zebrafish Larvae,” Current Biology,
vol. 22, no. 21, pp. 2042-2047, Nov. 2012.

[16] F. Emran, J. Rihel, A.R. Adolph, and J.E. Dowling, “Zebrafish Lar-
vae Lose Vision at Night,” Proc. Nat’l Academy of Sciences USA,
vol. 107, no. 13, pp. 6034-6039, Mar. 2010.

[17] M. Kabra, A.A. Robie, M. Rivera-Alba, S. Branson, and K.
Branson, “JAABA: Interactive Machine Learning for Automatic
Annotation of Animal Behavior,” Nature Methods, vol. 10, no. 1,
pp. 64-67, 2013.

[18] O. Mirat, J.R. Sternberg, K.E. Severi, and C. Wyart, “ZebraZoom:
An Automated Program for High-Throughput Behavior Analysis
and Categorization,” Frontiers in Neural Circuits, vol. 7, pp. 107:1-
107:12, 2013.

[19] X.P. Burgos-Artizzu, P. Doll�ar, D. Lin, D.J. Anderson, and P.
Perona, “Social Behavior Recognition in Continuous Video,” Proc.
IEEE Conf. Computer Vision and Pattern Recognition (CVPR),
pp. 1322-1329, 2012.

[20] C.M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[21] A. Franke, T. Caelli, and R.J. Hudson, “Analysis of Movements
and Behavior of Caribou (Rangifer tarandus) Using Hidden Mar-
kov Models,” Ecological Modelling, vol. 173, no. 2-3, pp. 259-270,
2004.

[22] Y. Liu, S.-H. Lee, and T.-S. Chon, “Analysis of Behavioral Changes
of Zebrafish (Danio rerio) in Response to Formaldehyde Using
Self-Organizing Map and a Hidden Markov Model,” Ecological
Modelling, vol. 222, no. 14, pp. 2191-2201, 2011.

[23] Y. Li, J.-M. Lee, T.-S. Chon, Y. Liu, H. Kim, M.-J. Bae, and Y.-S.
Park, “Analysis of Movement Behavior of Zebrafish (Danio rerio)
under Chemical Stress Using Hidden Markov Model,” Modern
Physics Letters B, vol. 27, no. 2, pp. 1 350 014:1-1 350 014:13, 2013.

[24] “Zebrabox,” http://www.vplsi.com/content.php?content.72, 2014.
[25] J.J. Ingebretson and M.A. Masino, “Quantification of Locomotor

Activity in Larval Zebrafish: Considerations for the Design of
High-Throughput Behavioral Studies,” Frontiers in Neural Circuits,
vol. 7, pp. 109:1–-109:9, 2013.

[26] H.M. Ashtawy and N.R. Mahapatra, “A Comparative Assessment
of Ranking Accuracies of Conventional and Machine-Learning-
Based Scoring Functions for Protein-Ligand Binding Affinity Pre-
diction,” IEEE/ACM Trans. Computational Biology and Bioinformat-
ics, vol. 9, no. 5, pp. 1301-1313, Sept./Oct. 2012.

[27] K. Murphy, Machine Learning: A Probabilistic Perspective. The MIT
Press, 2012.

[28] C.-C. Chang and C.-J. Lin, “LIBSVM: A Library for Support Vector
Machines,” ACM Trans. Intelligent Systems and Technology, vol. 2,
no. 3, pp. 27:1-27:27, 2011.

[29] “ZFIN: The Zebrafish Model Organism Database,” http://zfin.
org/ZDB-GENO-960809-7, 2014.

[30] M. Westerfield, The Zebrafish Book: A Guide for the Laboratory Use of
Zebrafish (Danio rerio). Univ. of Oregon Press, 2000.

[31] Y.-Y. Huang and S.C.F. Neuhauss, “The Optokinetic Response in
Zebrafish and Its Applications,” Frontiers in Bioscience: A J. and Vir-
tual Library, vol. 13, pp. 1899-1916, 2008.

[32] S.E. Brockerhoff, “Measuring the Optokinetic Response of Zebra-
fish Larvae,”Nature Protocols, vol. 1, no. 5, pp. 2448-2451, 2006.

[33] C. Nusslein-Volhard and R. Dahm, Zebrafish: A Practical Approach.
Oxford Univ. Press, 2002.

[34] J. Lin, E. Keogh, and L. Wei, “Experiencing SAX: A Novel Sym-
bolic Representation of Time Series,” Data Mining and Knowledge
Discovery, vol. 15, no. 2, pp. 107-144, 2007.

[35] J.S. Richman and J.R. Moorman, “Physiological Time-Series Anal-
ysis Using Approximate Entropy and Sample Entropy,” Am. J.
Physiology—Heart and Circulatory Physiology, vol. 278, pp. H2039-
H2049, 2000.

Yuan Gao received the BS degree in biomedical
engineering in 2009 and the MS degree in pattern
recognition and intelligent systems from Huaz-
hong University of Science and Technology in
2012. He is currently working toward the PhD
degree in the Department of Electronic Engineer-
ing, City University of Hong Kong. His current
interests include machine learning, pattern rec-
ognition, and applications.

Rosa H.M. Chan received the BEng (first Hons.)
degree in automation and computer-aided engi-
neering and a minor in computer science from
the Chinese University of Hong Kong in 2003.
She received the PhD degree in biomedical engi-
neering from the University of Southern California
(USC) in 2011, where she also received the MS
degrees in biomedical engineering, electrical
engineering, and aerospace engineering. She is
currently an assistant professor in the Depart-
ment of Electronic Engineering, City University of

Hong Kong. Her research interests include mathematical modeling of
neural system, development of neural prosthesis, and brain-machine
interface applications. She received the Croucher Scholarship and Sir
Edward Youde Memorial Fellowship for Overseas Studies in 2004. In
the summer of 2010, she received Google Scholarship and participated
in the Singularity University Graduate Studies Program at NASA AMES.

Tommy W.S. Chow (M’93-SM’03) received the
BSc (First Hons.) and the PhD degrees from the
University of Sunderland, Sunderland, United
Kingdom. He joined the City University of Hong
Kong, Hong Kong, as a lecturer in 1988. He is
currently a professor in the Electronic Engineer-
ing Department. His research interests include
the area of machine learning including super-
vised and unsupervised learning, data mining,
pattern recognition and fault diagnostic. He
worked for NEI Reyrolle Technology at Hebburn,

England, developing digital simulator for transient network analyser. He
then worked on a research project involving high current density current
collection system for superconducting direct current machines, in collab-
oration with the Ministry of Defense (Navy) at Bath, England, and the
International Research and Development at Newcastle upon Tyne. He
has authored or coauthored more than 170 technical papers in interna-
tional journals, 5 book chapters, and more than 60 technical papers in
international conference proceedings.

Liyun Zhang received bachelor of medicine
degree from the Beijing Medical University, China
(current name: Peking University, Health Science
Center) in 1995. She worked as an ophthalmolo-
gist in the Department of Ophthalmology at Bei-
jing Tong Ren Hospital from 1995 to 2004.
During the clinical practice, she also attended a
Master program at Capital University of Medical
Sciences, Beijing, China, and received her mas-
ter of medicine degree in 2003. She received the
PhD degree in ophthalmology from The Chinese

University of Hong Kong (CUHK) in 2007. She pursued her postdoctoral
research at Purdue University, Indiana, USA from 2009 to 2012. During
this period, she received a Pediatric Ophthalmology Research Grant
from the Knights Templar Eye Foundation in 2010 and a Charles D. Kel-
man, MD Scholar Award from The International Retinal Research Foun-
dation in 2011. Currently, she is working as a postdoctoral research
fellow at the University of Cincinnati, Ohio, USA. Her research interest is
identifying new treatments for eye diseases.

700 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 11, NO. 4, JULY/AUGUST 2014



Sylvia Bonilla received the BS degree in biology
and a minor in organic and biochemistry from the
California State University, Dominguez Hills, in
2008. She is currently working toward the PhD
degree in the Biological Sciences Department at
Purdue University.

Chi-Pui Pang received the BSc degree in bio-
chemistry in 1978 from the University of London
and the DPhil degree in 1982 from the University
of Oxford on an EP Abraham Research Fund
Scholarship, followed by two years postdoctoral
research in Oxford. He is S.H. Ho professor of
Visual Sciences, a professor of Ophthalmology
and Visual Sciences, and the chairman of the
Department of Ophthalmology and Visual Scien-
ces, The Chinese University of Hong Kong. He is
also the director of The Shantou University/The

Chinese University of Hong Kong Joint Shantou International Eye Cen-
ter. His research interests include genomic studies and gene mapping of
glaucoma, retinal diseases, myopia, congenital cataracts, retinoblas-
toma, thyroid-associated orbitopathy, diabetic retinopathy, retinitis pig-
mentosa, uveitis, and corneal dystrophies. He also works on ocular stem
cells and herbal molecules on their effects in eye diseases. He has more
than 310 publications and 13 book chapters. He is a reviewer for the
Wellcome Trust (UK), National Eye Institute (USA), National Medical
Research Council (Singapore), Health Research Board (Ireland), Cata-
lan Agency for Health Technology Assessment and Research (Spain),
and National Science Foundation, China. He is honorary or visiting pro-
fessor of more than 20 clinical or research institutions in mainland China.

Mingzhi Zhang has been working on ophthal-
mology for more than 30 years, with subspecialty
in Cataract, Glaucoma, and Optometry. She is
the pioneer of phacoemulsification and refractive
surgery for cataract. Her study of surgical treat-
ment of glaucoma with cataract has attracted
great attention in these fields. Recently, by com-
bining both basic research and clinical research
together, she focused on mapping of disease
causing genes of congenital cataract as well as
susceptibility genes of glaucoma and high myo-

pia. She has conducted six research projects founded national wide, two
International cross-cutting projects, three provincial research projects in
recent years. One-hundred thirty one papers have been published in
national and provincial journals, of which there are 61 papers accepted
in international peer reviewed SCI journals.

Yuk Fai Leung received the BSc (first Hons.)
and the MPhil degrees in biochemistry from the
Hong Kong University of Science and Technol-
ogy in 1996 and 1998, respectively. He received
the PhD degree in ophthalmology from the Chi-
nese University of Hong Kong in 2002. He
received a Croucher Foundation Postdoctoral
Fellowship the same year and pursued his post-
doctoral research at Harvard University until
2007. In 2005, he was awarded with a Pediatric
Ophthalmology Research Grant from the Knights

Templar Eye Foundation. In 2008, he established his own research
group at Purdue University in the Department of Biological Sciences. He
also received a Hope for Vision Award in the same year. His current
research focuses on using zebrafish eye disease models to elucidate
disease-causing gene network and identify new drug therapies

.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

GAO ET AL.: A HIGH-THROUGHPUT ZEBRAFISH SCREENING METHOD FOR VISUAL MUTANTS BY LIGHT-INDUCED LOCOMOTOR... 701



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


