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Robust Feature Matching for Remote Sensing Image
Registration via Locally Linear Transforming

Jiayi Ma, Huabing Zhou, Ji Zhao, Yuan Gao, Junjun Jiang, and Jinwen Tian

Abstract—Feature matching, which refers to establishing reli-
able correspondence between two sets of features (particularly
point features), is a critical prerequisite in feature-based registra-
tion. In this paper, we propose a flexible and general algorithm,
which is called locally linear transforming (LLT), for both rigid
and nonrigid feature matching of remote sensing images. We start
by creating a set of putative correspondences based on the feature
similarity and then focus on removing outliers from the putative
set and estimating the transformation as well. We formulate this
as a maximum-likelihood estimation of a Bayesian model with
hidden/latent variables indicating whether matches in the puta-
tive set are outliers or inliers. To ensure the well-posedness of
the problem, we develop a local geometrical constraint that can
preserve local structures among neighboring feature points, and it
is also robust to a large number of outliers. The problem is solved
by using the expectation–maximization algorithm (EM), and the
closed-form solutions of both rigid and nonrigid transformations
are derived in the maximization step. In the nonrigid case, we
model the transformation between images in a reproducing kernel
Hilbert space (RKHS), and a sparse approximation is applied to
the transformation that reduces the method computation complex-
ity to linearithmic. Extensive experiments on real remote sensing
images demonstrate accurate results of LLT, which outperforms
current state-of-the-art methods, particularly in the case of severe
outliers (even up to 80%).

Index Terms—Feature matching, locally linear transforming
(LLT), outlier, registration, remote sensing.

I. INTRODUCTION

IMAGE registration is a fundamental and challenging prob-
lem in remote sensing, and it is a critical prerequisite in a

wide range of applications including environment monitoring,
change detection, image fusion, image mosaic, and map up-
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dating [1], [2]. The primary objective of image registration is
to geometrically overlay two images of the same scene (i.e.,
the reference and sensed images) taken at different times, from
different viewpoints, or by different sensors.

During the last decades, a variety of techniques have been de-
veloped for remote sensing image registration. These methods
can be roughly classified into two categories: area based and
feature based [1]. The former finds the matching information by
using the original pixel intensities in the overlapped region of
two images with a specified similarity metric, whereas the latter
seeks correspondence between local features under descriptor
similarity and/or spatial geometrical constraints. The area-
based methods are preferable in case of few prominent details
where the distinctive information is provided by pixel intensi-
ties rather than by local shapes and structures, but they suffer
from heavy computational complexities, image distortions, and
illumination changes. By contrast, feature-based methods are
more robust, which allow registering images of completely
different nature and can handle complex image distortions. The
features used in these methods can be represented as compact
geometrical entities at different levels, such as points, line
segments, contours, and regions [3], [4]. Nevertheless, feature-
based methods are typically formulated as a point matching
problem as point representations are general and easy to extract.
In this paper, we focus on point-based methods for registration
of remote sensing images.

The key requirement of point-based method is feature match-
ing, which refers to the process of establishing reliable corre-
spondence between two sets of feature points (also known as
key points or interest points). Although many methods have
been proposed for different applications, it is still a challenging
task to develop a unified framework for remote sensing image
registration. First, remote sensing images often contain local
distortions caused by ground relief variations and imaging
viewpoint changes, which means that they are not “exactly
matchable” via a simple parametric model (e.g., rigid or affine
transformation) as used in most existing point-based methods.
Therefore, high-dimensional nonrigid transformations are re-
quired to produce accurate alignments. Second, the complex
nature of remote sensing images (e.g., unavoidable noise, occlu-
sions, repeated structures, and multisensor data) often results in
a high number of false matches, which have a significant impact
on determining the transformational model required in aligning
the images together. Therefore, a robust procedure of outlier
removal is desirable. Third, for large remote sensing images,
the scale of extracted feature points is usually extremely large,
e.g., tens of thousands. This poses a significant burden on
typical feature matching methods, particularly in the nonrigid
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case. Therefore, it is of particular advantage to develop a more
efficient technique.

To address these issues, we propose a novel method called
locally linear transforming (LLT) in this paper. The method
is general and efficient, which can handle both rigid and
nonrigid transformations within linearithmic complexity,
and it is also robust to a very large number of outliers.
More precisely, we introduce a unified maximum-likelihood
framework for robust estimation of transformation from a
set of putative correspondences contaminated by noise and
outliers. Our approach associates each correspondence with a
latent variable, which indicates whether it is an inlier or not,
and then alternatively recovers the underlying transformation
(either rigid or nonrigid) and estimates the inlier set by using
an expectation–maximization (EM) algorithm [5]. To ensure
the well-posedness1 of the optimization problem, we develop a
local geometrical constraint that is similar to the locally linear
embedding (LLE) [6]. The local geometrical constraint can
also preserve local structures among neighboring feature points
after the transformation and hence helps to recover the accurate
correspondence. Moreover, in the nonrigid case, we model the
transformation in a functional space, called the reproducing
kernel Hilbert space (RKHS) [7], in which the function has an
explicit kernel representation.

Our contribution in this paper includes the following three
aspects. First, we propose a unified maximum-likelihood for-
mulation for robust feature matching of remote sensing images.
Compared with the existing methods that typically rely on a
parametric transformational model, our formulation can also
handle nonparametric model such as nonrigid transformation.
Second, we develop a local geometrical constraint to regularize
the transformation. This constraint can preserve local structures
among neighboring feature points, which is an intrinsic prop-
erty of remote sensing image pairs, and hence can handle a large
number of outliers. Third, we introduce a fast implementation
based on sparse approximation to improve the computational
efficiency. This makes our method to have linearithmic time
complexity and linear space complexity with respect to the
scale of feature correspondence, which is significant for a large
size of remote sensing images.

The remainder of this paper is organized as follows.
Section II describes background material and related work. In
Section III, we present our robust LLT algorithm and apply
it to rigid, affine,2 and nonrigid feature matching. Section IV
illustrates the registration performance of our method on
various types of remote sensing image pairs with comparisons
to other approaches, followed by some concluding remarks in
Section V.

II. RELATED WORK

Image registration has been widely applied in many
fields such as computer vision [8]–[11], pattern recognition

1A problem is well-posed if its solution exists, is unique, and depends
continuously on the data (e.g., it is stable).

2Note that affine is also a kind of simple nonrigid transformation that allows
only for translation, rotation, anisotropic scaling, and skews. Nonrigid in this
paper typically refers to a nonlinear transformation.

[12]–[15], image analysis [16]–[20], and particularly in the
field of remote sensing [1], [21]–[24]. Exhaustive reviews on
image registration methods can be found in the literature [1],
[3], [22], [25]. Then, we briefly review the two major types
of methods, i.e., the area-based methods and feature-based
methods, particularly in the context of remote sensing image
registration.

A. Area-Based Methods

Area-based methods deal directly with the image intensity
values without attempting to detect salient structures such as
features. These methods can be broadly classified into three
types: correlation-like methods, Fourier methods, and mutual
information (MI) methods [1].

Correlation-like methods such as cross-correlation and its
modifications are a classical representative of the area-based
methods [26]. The main idea of these methods is to compute
the similarities of window pairs in two images, and consider
the one with the largest similarity as a correspondence. In
remote sensing applications, a correlation-like method utiliz-
ing maxima of wavelet coefficients has been developed for
automatic registration [27]. The correlation-like methods suffer
from some drawbacks such as the flatness of the similarity mea-
sure in textureless regions and high computational complexity.
However, due to their easy hardware implementation, which
is beneficial for real-time applications, these methods are still
often in use.

Fourier methods exploit the Fourier representation of images
in the frequency domain [28]. A common technique is the
phase correlation method based on the Fourier shift theorem,
which was later extended to account for rotation and scaling
[29]. The applications to remote sensing are described in [30].
Compared with correlation-like methods, these methods have
some advantages in computational efficiency and are also ro-
bust to frequency-dependent noise. However, they have some
limitations in case of image pairs with significantly different
spectral contents.

Finally, area-based methods also include MI methods. The
MI provides an attractive metric for maximizing the depen-
dence between two images, and it is particularly suitable for
multimodal registration in remote sensing, which often makes
use of the exploitation of multisensors [31], [32]. Moreover,
for medical image registration, the MI-based methods not only
work directly with image intensities but also with extracted
features such as points of the area borders [33]. Despite its
outstanding performance, the MI-based methods do not provide
a global maximum of the entire search space for the transforma-
tion and hence inevitably reduces its robustness.

B. Feature-Based Methods

The second approach for image registration is based on the
extraction of salient structures, i.e., features, in the images. We
assume that the extracted features are represented by spatial
points, which are also called control points in the literature [1].
The image registration then reduces to a feature matching prob-
lem, where the goal is to determine the correct correspondence
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and/or to find the underlying spatial transformation between
two sets of control points [34].

A popular strategy for solving the feature matching problem
is to use a two-stage process [34]–[36]. In the first stage,
a set of putative correspondences are computed by using
a similarity constraint, which requires that points can only
match points with similar local descriptors (e.g., scale-invariant
Fourier transform (SIFT) [37] or shape context [38]). This
putative correspondence set typically includes not only most
of the true matches, i.e., the inliers, but also a large number of
false matches, or outliers, due to ambiguities in the similarity
constraint. The second stage is designed to remove the outliers
by using a geometrical constraint, which requires that the
matches satisfy an underlying geometrical requirement. The
inliers and the geometric parameters of the transformation are
then obtained accordingly. Examples of this strategy include
the classical RANSAC algorithm [39] and analogous robust
hypothesize-and-verify methods [40], [41] that typically rely
on parametric models, and vector field consensus [34], [42],
robust point matching via L2E [43], graph shift (GS) [44],
and identifying correspondence function (ICF) [45], which are
based on nonparametric models. In remote sensing, the majority
of the feature-based methods also use the two-stage process.
In general, the feature descriptors used in remote sensing
images are not only SIFT [37] and its variants [46]–[48] but
also include SURF [49] and complex wavelet feature [50].
The geometric transformational models are not only typically
parametric, such as rigid, affine [51], [52], and projective
[2], but also include nonparametric models, such as a non-
rigid model with thin-plate spline (TPS) [21], and a graph-
based model, such as restricted spatial order constraints [53].
Although these methods are very successful in many situa-
tions, none of them provide a uniform framework to handle
both the rigid and nonrigid matching problems under severe
outliers.

Another strategy for feature matching is to formulate this
problem in terms of a correspondence matrix between control
points together with a parametric or nonparametric geometrical
constraint. These methods typically involve a two-step update
process, which alternates between the correspondence and the
transformation estimation. The well-known heuristic iterative
closest point algorithm is one such example [54], [55]. Chui and
Rangarajan [56] established a general framework for estimating
correspondence and transformation, where in a nonrigid case,
the transformation is modeled as a TPS function. Alternatively,
the coherence point drift (CPD) algorithm [57] uses Gaussian
radial basis functions instead of TPS, and it was later improved
by using global–local topology constraints [58], [59]. In these
formulations, both the rigid and nonrigid cases can be dealt
with, but these methods usually throw out the similarity in-
formation (e.g., a descriptor) and use only the spatial position
of each feature point; hence, the matching performance may
probably be degraded. In remote sensing, a method combining
spatial and similarity information has also been introduced
[51], but it can only be applied to a parametric model such
as an affine model. In this paper, we introduce a uniform
maximum-likelihood formulation for both rigid and nonrigid
feature matching. By combining it with a local geometrical

constraint, the proposed approach is also able to handle a large
number of outliers.

III. LOCALLY LINEAR TRANSFORMING ALGORITHM

This section describes the proposed feature matching algo-
rithm for remote sensing images. We start by laying out a
maximum-likelihood formulation for feature matching and then
introduce a local geometrical constraint and propose our LLT
algorithm in the context of remote sensing. We subsequently
apply the proposed approach to rigid, affine, and nonrigid
feature matching. Finally, we analyze the computational com-
plexity and provide the implementation details of the proposed
approach.

A. Problem Formulation

Suppose we are given a set of N putative feature correspon-
dences S = {(xn,yn)}Nn=1 extracted from a remote sensing
image pair, where xn and yn are 2-D column vectors indicating
the spatial positions of feature points in the two 2-D images
(adaptation to higher dimension is straightforward). Typically,
S is contaminated by some unknown noise and outliers, and
the goal is to distinguish inliers from the outliers to establish
reliable correspondences.

Without loss of generality, we make the assumption that
the noise on inliers is isotropic Gaussian with zero mean
and covariance σ2I, where I is an identity matrix, and the
outlier distribution is uniform [40]. A more general assump-
tion of anisotropic Gaussian noise on inliers has also been
considered in [60]. We then associate the nth correspondence
with a latent variable zn ∈ {0, 1}, where zn = 1 indicates the
correspondence (xn,yn) being an inlier and zn = 0 points to
an outlier. Let T be the transformation that characterizes the
underlying geometrical relation between the correspondences,
e.g., for an inlier correspondence (xn,yn), yn = T (xn). Thus,
the mixture model takes the following form:

p(yn|xn, θ) =
∑
zn

p(yn, zn|xn, θ)

= p(z = 1)p(yn|xn, θ, zn = 1)
+ p(z = 0)p(yn|xn, θ, zn = 0)

=
γ

2πσ2
e−

‖yn−T (xn)‖2

2σ2 +
1− γ

a
(1)

where θ = {T , σ2, γ} includes a set of unknown parameters,
γ is the mixing coefficient specifying the marginal distribu-
tion over the latent variable (i.e., ∀ zn, p(zn = 1) = γ), and
1/a denotes the outlier uniform distribution with a being
the area of the second image (i.e., the range of yn). Let
X = (x1, . . . ,xN )T and Y = (y1, . . . ,yN )T be the N × 2
matrices indicating the two feature point sets, respectively.
By using the independent and identically distributed (i.i.d.)
data assumption, we have the likelihood function p(Y|X, θ) =∏N

n=1 p(yn|xn, θ).
We give a maximum-likelihood estimation of the parameter

set θ, i.e., θ∗ = argmaxθ p(Y|X, θ), which is equivalent to
minimizing the negative log-likelihood function:

E(θ) = − ln p(Y|X, θ) = −
N∑

n=1

ln p(yn|xn, θ). (2)
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To solve this problem, we consider the EM algorithm. It
alternates with two steps: the E-step basically estimates the
responsibility that indicates to what degree a correspondence
belonging to the inlier set under the given parameter set θ,
whereas the M-step updates θ based on the current estimate of
the responsibility. We follow standard notations [61] and omit
some terms that are independent of θ. Considering the negative
log-likelihood function in (2), the complete-data log likelihood
is then given by

Q(θ, θold) = − 1

2σ2

N∑
n=1

pn ‖yn − T (xn)‖2 − lnσ2
N∑

n=1

pn

+ ln γ
N∑

n=1

pn + ln(1− γ)
N∑

n=1

(1− pn) (3)

where pn = P (zn = 1|xn,yn, θ
old) is a posterior probability

indicating to what degree (xn,yn) being an inlier.
E-Step: Denote P = diag(p1, . . . , pN) as a diagonal matrix,

where pn can be computed by using the current parameter set
θold based on Bayes rule, i.e.,

pn =
γe−

‖yn−T (xn)‖2

2σ2

γe−
‖yn−T (xn)‖2

2σ2 + 2πσ2(1−γ)
a

. (4)

M-Step: Reestimate the parameter set using the current
responsibilities: θnew = argmaxθ Q(θ, θold). Taking deriva-
tives of Q with respect to σ2 and γ, and setting them to zero,
we obtain

σ2 =
tr
(
(Y −T)TP(Y −T)

)
2 · tr(P)

(5)

γ =
tr(P)

N
(6)

where T = (T (x1), . . . , T (xN ))T. In order to complete the
EM algorithm, the transformation T should be estimated in the
M-step. We will discuss it later in the succeeding sections.

After the EM iteration converges, with a predefined threshold
τ , the inlier set I could be obtained according to the following
criterion:

I = {(xn,yn) : pn > τ, n ∈ INN} . (7)

B. Local Geometrical Constraint

The transformation T characterizes the global geometrical
relation between the image pair, which is useful in keeping
the overall spatial connectivity of the point correspondences
during matching. However, for remote sensing image pairs, the
difference between the disparities of the point correspondences
in local areas are typically quite small; hence, the local struc-
tures among neighboring feature points are also very strong and
stable. This is particularly beneficial when the images involve
nonrigid or discontinuous motions [62]. Therefore, to establish
accurate matches, a local geometrical constraint on the point
correspondences is desired.

In our problem, we hope that the local structures in the point
set could be preserved after the transformation T . To this end,
we introduce an efficient scheme similar to the LLE algorithm
[6], [58], which is proposed as a nonlinear dimensionality
reduction method to preserve the local neighborhood structure
in a low-dimensional manifold. First, search the K nearest
neighbors for each point in X. Denote by W an N ×N weight
matrix, and enforce Wij = 0 if xj does not belong to the set
of neighbors of xi. Second, minimize the reconstruction errors
measured by the cost function as follows:

E(W) =

N∑
i=1

∥∥∥∥∥∥xi −
N∑
j=1

Wijxj

∥∥∥∥∥∥
2

(8)

under a constraint that the rows of the weight matrix sum
to one: ∀ i,

∑N
j=1 Wij = 1. The optimal weights Wij can

be obtained by solving a least squares problem. Third, the
local geometry of each inlier point after the transformation T
could be preserved by minimizing a transforming cost term∑N

i=1 pi‖T (xi)−
∑N

j=1 WijT (xj)‖2. By combining it with
(3), the objective function in the M-step then becomes

Q̂(θ, θold)=Q(θ, θold)−λ

N∑
i=1

pi

∥∥∥∥∥∥T (xi)−
N∑
j=1

WijT (xj)

∥∥∥∥∥∥
2

(9)

where λ > 0 controls the tradeoff between the two terms.
Clearly, the estimates of σ2 and γ in (5) and (6) will not be
influenced by the additional transforming cost term. To estimate
T , we consider the related terms in (9) and obtain the following
minimizing problem:

Ψ(T ) =
1

2σ2

N∑
n=1

pn ‖yn − T (xn)‖2

+ λ

N∑
i=1

pi

∥∥∥∥∥∥T (xi)−
N∑
j=1

WijT (xj)

∥∥∥∥∥∥
2

(10)

which is composed of an empirical error term and a transform-
ing cost term.

Note that in the linear case such as rigid or affine transfor-
mation, by using the homogeneous coordinate notation x̄ =
(xT, 1)T, the transformation T can be represented as a 3 ×
3 matrix H : yn = Hxn. Thus, the transforming cost term
in (10) has the form λ‖P1/2(X̄−WX̄)HT‖2F with ‖ · ‖F
being the Frobenius norm. As P and W are fixed during
transformation estimation, the transforming cost term then be-

comes λ‖GHT‖2F , where G = P1/2(X̄−WX̄) is an N × 3
constant matrix. In this context, the transforming cost term
plays a role of regularization on the transformation T , which
ensures the well-posedness of the empirical risk minimization
[63], and it is controlled by a locally linear constraint (i.e.,
X̄−WX̄) and a match correctness constraint (i.e., P). This
idea can be generalized to the nonlinear case since we expect
each feature point and its neighbors to lie on or close to a locally
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Fig. 1. Schematic of the local geometrical constraint. (a) Set of putative
correspondences, where ◦ and ∗ are the feature points of the left and right
images, and blue and red lines represent inliers and outliers, respectively.
(b) Assign neighbors to each feature point xi, e.g., the five solid circles around
xi. (c) Compute the weights Wij that best linearly reconstruct xi from its
neighbors. (d) Optimize the transformation T under the constraint that each
point xi can be reconstructed by its neighbors with weights Wij after the
transformation. (e) Alignment of two point sets by using transformation T .

linear patch.3 We give a schematic illustration of the local
geometrical constraint in Fig. 1. As our method recovers global
transformation based on locally linear fits, we name it LLT.

We next consider the modeling of the transformation. In
remote sensing tasks such as image mosaicing, environmental
monitoring, and change detection, the relationships between
image pairs are typically modeled by rigid or affine transfor-
mations [2], [46]. This is appropriate since remote sensing
images are often taken at very long range, and then they could
be approximately considered planar scenes. However, when
the scene involves land drift or feature points with significant
depth relief such as spatially variant terrain relief images,
the planar scene assumption then cannot work well. In this
case, a relatively complex nonrigid model is more preferable.
Our proposed formulation in this paper is independent of the
transformation model, and it is able to handle most common
geometric distortions found in remotely sensed imagery. To
solve the transformation T from (10), we specify it for rigid,
affine, and nonrigid cases, separately.

3The locally linear assumption in the nonrigid case may fail when the
neighbors cover area where the geometrical transformation nonlinearity cannot
be neglected. However, the assumption works quite well as the feature points
are typically in large scale and spread over the image.

C. Rigid Feature Matching

For rigid feature matching, we define the transformation as
T (xn) = sRxn + t, where R is a 2 × 2 rotation matrix, t
is a 2 × 1 translation vector, and s is a scaling parameter.
By considering that R is orthogonal and the constraint ∀ i,∑N

j=1 Wij = 1, the objective function (10) becomes

Ψ(R, t, s) =
1

2σ2

N∑
n=1

pn‖yn − sRxn − t‖2

+ λ

N∑
i=1

pi

∥∥∥∥∥∥s
⎛⎝xi −

N∑
j=1

Wijxj

⎞⎠∥∥∥∥∥∥
2

s.t. RTR = I, det(R) = 1. (11)

Note that the first term is similar to the absolute orientation
problem [57], [64]. The solutions of t and s are straightforward,
whereas the solution of R is complicated due to the additional
constraints. To obtain the closed-form solution, we consider the
following lemma [65].

Lemma 1: Let R be an unknown D ×D rotation matrix and
B be a known D ×D real square matrix. Let USVT be a
singular value decomposition of B, where UUT = VVT = I
and S = diag(si) with s1 ≥ · · · ≥ sD ≥ 0. Then, the optimal
rotation matrix R that maximizes tr(BTR) is R = UDVT,
where D = diag(1, . . . , 1, det(UVT)).

To solve the rotation matrix R, we rewrite the objective
function (11) so that it has the form tr(BTR). To this end,
we first eliminate the translation parameter t. By taking the
derivative of Ψ with respect to t and setting it to zero, we obtain

t =
1

tr(P)
YTP1− 1

tr(P)
sRXTP1 = μy − sRμx (12)

where μx and μy are the mean vectors defined as

μx =
1

tr(P)
XTP1 μy =

1

tr(P)
YTP1. (13)

By substituting t back into the objective function and omit-
ting the terms that are independent of R and s, we obtain

Ψ(R, s) =
1

2σ2
tr(s2X̂TPX̂− 2sŶTPX̂RT)

+ λ · tr(s2XTQX) (14)

where X̂ = X− 1μT
x and Ŷ = Y − 1μT

y are centered point
matrices, amd Q = (I−W)TP(I−W). Specifically, we
consider the term related to R, which has the following form:

Ψ(R) = − s

σ2
tr
(
(ŶTPX̂)

T
R
)
. (15)

Therefore, by applying Lemma 1, the optimal R of the
problem in (11) is given by

R = UDVT (16)

where U and V can be obtained from USVT = svd(ŶTPX̂),
and D = diag(1, det(UVT)).
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To solve the scaling parameter s, we equate the correspond-
ing derivative of (14) to zero and obtain

s =
tr
(
(ŶTPX̂)

T
R
)

tr(X̂TPX̂) + 2λσ2tr(XTQX)
. (17)

So far, all the parameters in the M-step have been solved. We
summarize our LLT algorithm for rigid matching in Algorithm 1.

D. Affine Feature Matching

Compared with the rigid case, affine feature matching is
simpler since the optimization is unconstrained. We define the
transformation as T (xn) = Axn + t, where A is a 2 × 2
affine matrix, and t is a 2 × 1 translation vector. The objective
function (10) then becomes

Ψ(A, t) =
1

2σ2

N∑
n=1

pn‖yn −Axn − t‖2

+ λ
N∑
i=1

pi

∥∥∥∥∥∥A
⎛⎝xi −

N∑
j=1

Wijxj

⎞⎠∥∥∥∥∥∥
2

. (18)

The solution of t is similar to the rigid case. The solution
of A can be obtained by directly taking the partial derivative of
Ψ, setting it to zero, and solving the resulting linear system of
equations. The optimal t and A are given by

t = μy −Aμx (19)

A = (ŶTPX̂)(X̂TPX̂+ 2λσ2XTQX)
−1
. (20)

So far, the affine transformation in the M-step has been
solved. We summarize our LLT for affine matching in
Algorithm 2.

E. Nonrigid Feature Matching

We now consider the case of nonrigid transformation. To
this end, we define the transformation T as the initial position
plus a displacement function f : T (x) = x+ f(x), where f

is modeled by requiring it to lie within a specific functional
space H, namely, a vector-valued RKHS [66] (associated with
a particular kernel), as described in detail in Appendix A. We
define H by a matrix-valued kernel Γ : IR2 × IR2 → IR2×2,
and a diagonal Gaussian kernel Γ(xi,xj) = κ(xi,xj) · I =
e−β‖xi−xj‖2 · I is chosen in this paper. Thus, we have the
following theorem, and the proof is given in Appendix B.

Theorem 1: The optimal solution of the objective function
(10) in the nonrigid case is given by

T (x) = x+ f(x) = x+

N∑
n=1

Γ(x,xn)cn (21)

with the coefficient set {cn : n ∈ INN} determined by a linear
system

(P+ 2λσ2Q)ΓC = PY − (P+ 2λσ2Q)X (22)

where C = (c1, . . . , cN )T, Γ ∈ IRN×N is the so-called Gram
matrix with Γij = κ(xi,xj) = e−β‖xi−xj‖2 .

Fast Implementation: In a feature matching problem, the
point set typically contains hundreds or thousands of points,
which causes significant complexity problems (both in time
and space). Consequently, we adopt a sparse approximation and
randomly pick only a subset of size M input points {x̃m}Mm=1

to have nonzero coefficients in the expansion of the solution
[i.e., (21)]. This follows the work in [67] and [68], where it
was found that this approximation works well and that simply
selecting a random subset of the input points in this manner per-
forms no worse than more sophisticated and time-consuming
methods. Thus, we seek a solution of the following form:

f(x) =

M∑
m=1

Γ(x, x̃m)cm. (23)

The chosen point set {x̃m}Mm=1 is somewhat analogous to
control points. By using the sparse approximation, the linear
system (22) becomes

ET(P+2λσ2Q)ECs=ETPY−ET(P+2λσ2Q)X (24)
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where the coefficient matrix Cs = (c1, . . . , cM )T ∈ IRM×2,
and E ∈ IRN×M with Eij = κ(xi, x̃j) = e−β‖xi−x̃j‖2 .

We summarize our LLT for nonrigid matching in Algorithm 3.

F. Convergence Analysis

Note that the negative log-likelihood function (2) is not
convex; therefore, it is unlikely that any algorithm can find
its global minimum. Our strategy is to initialize the variance
σ2 by a large initial value and then use the EM algorithm. At
large σ2, the objective function will be convex in a large region
surrounding the global minimum. Hence, we are likely to find
the global minimum for large variance. As σ2 decreases, the
position of the global minimum will tend to change smoothly.
The objective function will be convex in a small region around
its minimum, which makes it likely that using the old global
minimum as an initial value could converge to the new global
minimum. Therefore, as the iteration proceeds, we have a good
chance of reaching the global minimum. This is conceptually
similar to deterministic annealing [69], which uses the solution
of an easy (e.g., smoothed) problem to recursively give initial
conditions to increasingly harder problems, but it differs in
several respects (e.g., by not requiring any annealing schedule).
Moreover, the adaptive estimation of σ2 also allows to reduce
the number of free parameters and, more importantly, to obtain
good estimates very quickly (e.g., avoiding many of the local
minima inherent in the formulation).

G. Computational Complexity

To search the K nearest neighbors for each point in X,
the time complexity is close to O((K +N) logN) by using
the k − d tree [70]. According to (8), the time complexity of
obtaining the weight matrix W is O(K3N) because each row
of W can be solved separately with O(K3) time complexity.
For the rigid and affine cases, the time complexities of solving
the transformations are both O(KN); hence, the total time
complexities for rigid and affine matching are both O(K3N +
N logN). The space complexities for rigid and affine matching
are both O(KN) due to the memory requirements for storing
the weight matrix W.

TABLE I
COMPUTATIONAL COMPLEXITIES OF OUR LLT ALGORITHM

For the nonrigid case, the time complexity of solving the
linear system (22) is O(N3); hence, the total complexity can be
written as O(N3). The space complexity scales like O(N2) due
to the memory requirements for storing the Gram matrix Γ. By
using the sparse approximation, the time complexity of solving
the linear system (24) reduces to O(M2N +KMN +K2N).
Therefore, the total time complexity is O(K3N +M2N +
N logN), which is about linearithmic with respect to the scale
of the given correspondence set. The space complexity reduces
to O(MN +KN) due to the memory requirements for storing
E and W.

We summarize the time and space complexities of our LLT
algorithm in Table I. We see that the time complexities are
all linearithmic, and the space complexities are all linear, with
respect to the scale of the given correspondence set. This is
significant for large-scale problems.

H. Implementation Details

The performance of feature matching algorithms depends,
typically, on the coordinate system in which feature points are
expressed. We use data normalization to control for this. More
specifically, we perform a linear rescaling so that the spatial
positions of the two feature point sets both have zero mean and
unit variance. Note that the constant a of the uniform distribu-
tion in (1) should be set according to the data normalization.

Parameter Setting: There are mainly six parameters in our
method: K , λ, τ , γ, β, and M . Parameter K controls the num-
ber of nearest neighbors for linear reconstruction. Parameter λ
controls the influence of the local geometrical constraint on the
transformation T . Parameter τ is a threshold, which is used
for deciding the correctness of a correspondence. Parameter
γ reflects our initial assumption on the amount of inliers in
the correspondence sets. Parameters β and M are used in
our nonrigid matching algorithm, where the former determines
how wide the range of interaction between feature points, and
the latter is the required number of control points for sparse
approximation. We set K = 15, λ = 1000, τ = 0.5, γ = 0.9,
β = 0.1 and M = 15, throughout this paper.

IV. EXPERIMENTAL RESULTS

Here, we test the performance of our proposed LLT and
compare it with other three state-of-the-art feature matching
methods such as RANSAC [39], ICF [45], and GS [44].
Throughout the experiments, four algorithms’ parameters are
all fixed. The experiments are performed on a laptop with
2.5-GHz Intel Core CPU, 8-GB memory, and MATLAB code.

A. Data Sets and Settings

To evaluate our LLT algorithm, we design a set of experi-
ments on feature matching of remote sensing images involving
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Fig. 2. Qualitative matching results on several typical remote sensing image pairs. The first two rows satisfy the rigid model, the middle two rows satisfy the
affine model, and the last two rows satisfy the nonrigid model. The columns show the matching process during the EM iteration, and the level of the blue color
indicates to what degree a correspondence belongs to the inlier. For visibility, at most 300 randomly selected matches are presented in the first column.

rigid, affine, and nonrigid transformations. Next, we discuss
about the data sets used in this paper.

• Rigid data set. The test data set consists of two types of
image pairs, which were captured over eastern Illinois,
USA (from Erdas example data4) and Shanghai, China.
The first contains 20 color-infrared aerial photograph
image pairs with small overlap areas of sizes from 1391 ×
1374 to 1450×1380, which typically arises in the image
mosaic problem. The second contains eight SPOT image
pairs of all size 3086 ×2865 with each pair representing
the same area taken at different times, which typically
arises in the change detection problem. The latter type
of image pairs have already been aligned; hence, we
manually add random rigid transformations to make the
matching problem more challenging.

• Affine data set. The test data set contains 16 image
pairs with sizes from 400×400 to 1072×1072 , where
the reference images are the satellite-based SAR data of
RADARSAT II, and the sensed images are the airborne
SAR data of an unmanned aerial vehicle. All the image
pairs involved affine distortion and were captured over
Nantong, Jiangsu Province, China, during October and
November in 2013.

• Nonrigid data set. The test data set contains 16 pairs
of panchromatic aerial photographs with sizes from

4The data set is available at: http://download.intergraph.com/downloads/
erdas-imagine-2013-2014-example-data.

638×750 to 1432×1632, which were captured by a frame
camera over Tokyo, Japan and Wuhan, China. The image
pairs involve ground relief variations and imaging view-
point changes and hence are not exactly matchable via a
parametric model such as rigid or affine transformation.

In all the experimental data sets, different image pairs are
captured from different locations. We adopt the SIFT algorithm
to determine the putative feature correspondences, which is
implemented by the open-source VLFEAT toolbox [71]. The
experimental results are evaluated by precision and recall,
where the precision is defined as the ratio of the preserved
inlier number and the preserved correspondence number, and
the recall is defined as the ratio of the preserved inlier number
and the inlier number contained in the putative correspondence
set. To establish the ground truth, i.e., determining the match-
ing correctness of each correspondence, we first use LLT to
establish rough correspondences and then confirm the results
artificially, including both the preserved and removed corre-
spondences produced by LLT.

B. Qualitative Experiments

Our first experiment involves feature matching on several
typical remote sensing image pairs satisfying rigid, affine, or
nonrigid model, as shown in the first column of Fig. 2, where
each case contains two image pairs. We see that the matching
problem on these image pairs is quite a challenge due to the
small overlap areas in the first pair, the severe noise in the
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Fig. 3. Quantitative comparisons of LLT with RANSAC [39], GS [44], and ICF [45] on the rigid (left column), affine (middle column) and nonrigid (right
column) data sets. For each column, the top figure is the cumulative distribution function of the initial inlier ratio in the data set, and the bottom figure is the
precision–recall statistics of the four methods. Our LLT (red circles, upper right corner) has the best precision and recall overall.

middle two pairs, the ground relief variations in the last two
pairs, etc. We use our LLT algorithm with corresponding model
to establish accurate feature correspondences.

The whole matching process on these image pairs is illus-
trated schematically in Fig. 2. The columns show the iterative
process, the level of the blue color indicates to what degree a
correspondence belongs to inlier, and it is also the posterior
probability pn in (4). In the beginning, we establish the putative
correspondence sets by using the SIFT algorithm, and all the
SIFT matches are assumed to be inlier, as shown in the first
column. To visualize the matching process, we represent the
correspondences as motion fields, as shown in the second
column, where the head and tail of each arrow correspond
to the positions of a SIFT match in two images. As the EM
iterative process continues, progressively more refined matches
are shown in the third, fourth, and fifth columns. The fifth
column shows that LLT almost converges to a nearly binary
decision on the match correctness. The SIFT matches finally
preserved by our LLT are presented in the last column. From
the results, we see that our LLT is able to distinguish inliers
form the outliers on all the six typical pairs.

C. Quantitative Evaluation

We next give quantitative comparisons of our LLT with
RANSAC [39], CPD [57], ICF [45], and GS [44] on the
rigid, affine, and nonrigid data sets. The cumulative distribution
functions of the initial inlier ratio are shown in the top row of
Fig. 3, where the average inlier percentages are about 38.51%,
16.94%, and 52.10%, and the average numbers of correct

correspondences in the putative sets are about 117, 70, and 621,
respectively. We see that the data sets are quite challenging, par-
ticularly the affine data set, where most image pairs have inlier
percentages below 20% due to the severe noise in the SAR data.

The results of five methods on the three data sets are sum-
marized in the bottom row of Fig. 3, in which each scattered
dot represents a precision–recall pair on an image pair. For
RANSAC, the rigid transformation, affine transformation, and
fundamental matrix are chosen as the parametric models on
the rigid, affine, and nonrigid data sets, respectively. From the
results, we see that RANSAC can produce satisfying results
when the initial putative set does not contain many outliers, e.g.,
in the nonrigid data set. However, its performance degenerates
rapidly as the percentage of outliers increases, such as in the
affine data set. The performance of CPD is not that satisfied, and
it completely fails on many image pairs (indeed the image pairs
with more outlier correspondences). This is not surprising since
correspondence matrix-based methods do not use local descrip-
tors to establish initial correspondences; hence, they cannot
handle a large number of outliers. ICF usually has high preci-
sion or recall, but not simultaneously. It lacks robustness when
the outlier percentage is high. GS has a better precision–recall
tradeoff compared with ICF, but the matching results are still
not that satisfactory. This is probably because that GS cannot
estimate the factor for affinity matrix automatically, and it is not
affine invariant. In contrast, our proposed method LLT has the
best matching performance, where the precisions and recalls are
all close to 1. Note that all methods perform best on the nonrigid
data set. This is because that the nonrigid data set contains
high-quality images; hence, both the initial inlier percentages
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TABLE II
COMPARISON OF AVERAGE RUN TIMES

(SEC.) ON THE THREE DATA SETS

TABLE III
AVERAGE PRECISION–RECALL PAIRS OF OUR LLT ON THE RIGID,

AFFINE, AND NONRIGID DATA SETS. EACH ROW IS THE RESULTS WITH A
CERTAIN MODEL, SUCH AS RIGID (R), AFFINE (A), AND NONRIGID (NR)

(i.e., 50.12%) and inlier number (621) are quite large (they are
the two critical factors influencing the matching performance
which we will discuss in the next section).

The average run times of the four methods on the three data
sets are provided in Table II. We see that RANSAC is not very
efficient due to the low initial inlier percentages in the data sets.
CPD and GS are quite efficient when the scale of the data set
is not large but degrades rapidly as the scale of the data set
grows. ICF has better efficiency compared with the former two
algorithms. However, our LLT clearly is even faster on all the
three data sets. The large variances of the run times is because
that the initial inlier percentages have large variances.

We also have tested LLT with different models on the three
data sets, and the average precision–recall pairs are summarized
in Table III. As can be seen from the diagonal of the table,
for each data set, the “correct model” produces the best perfor-
mance. On the rigid data set, the affine and nonrigid models can
also work well. This is not surprising since the rigid model is a
special case of the affine or nonrigid model. On the affine data
set, the affine distortions are quite large (as can be seen from
the middle two rows in Fig. 2); hence, the rigid model fails. On
the nonrigid data set, we found that the main reason leading
to the inferior performance (e.g., low recall) of the rigid and
affine model is that they falsely remove the correspondences
with large disparities caused by the nonrigid distortions (e.g.,
the spatially variant terrain relief). Nevertheless, they still gen-
erate good results. This can be attributed to that the nonrigid
distortions are relatively slight, and a rigid or an affine model
can approximate the image relationship sufficiently well.

The influence of the transforming cost term on the perfor-
mance of LLT has also been investigated on the three data sets.
To this end, we test the average precision–recall pairs of the
proposed maximum-likelihood framework without the trans-
forming cost term, i.e., setting λ = 0 in (9). The statistic results
are given in Table IV. Clearly, LLT with the transforming cost
term can achieve much better performance, particularly in the
affine and nonrigid cases. This is appropriate since the severe
outliers in the affine data set and the nonrigid deformations in
the nonrigid data set will probably make the matching problem
not well posed, which means that the transforming cost term
indeed plays an important role for solving the problem.

TABLE IV
AVERAGE PRECISION–RECALL PAIRS OF OUR LLT AND LLT WITHOUT

THE TRANSFORMING COST TERM (I.E., λ = 0) ON THE RIGID,
AFFINE, AND NONRIGID DATA SETS

Fig. 4. Robustness tests of our LLT algorithm. Each column is a group of
results, where the top figure is the precision curves and the bottom figure is
the recall curves. The curves marked by “�” are the results of LLT with a rigid
model on a rigid image pair (i.e., the first row in Fig. 2); the curves marked by
“�” are the results of LLT with affine model on an affine image pair (i.e., the
third row in Fig. 2); the curves marked by “◦” are the results of LLT with a
nonrigid model on a nonrigid image pair (i.e., the fifth row in Fig. 2). In the left
column, we fix the inlier number and vary the inlier ratio; in the right column,
we fix the inlier ratio and vary the inlier number. The error bars indicate the
precision/recall means and standard deviations over ten trials.

D. Robustness Test

Finally, we test the robustness of our LLT with different
models. To this end, we use the three typical image pairs shown
in the first, third, and fifth rows of Fig. 2 to test LLT with rigid,
affine, and nonrigid models, respectively. In our evaluation, we
consider the following two scenarios.

On one hand, the initial inlier percentage in the data set
is clearly an important factor that influences the matching
performance. Thus, we fix the inlier number and vary the inlier
ratio, and obtain the precision and recall curves of LLT with
different models on the corresponding image pairs as shown in
the left column of Fig. 4. In the three image pairs, the initial
inlier numbers are 111, 67, and 150, respectively. We fix them
and vary the inlier ratio from 0.01 to 0.3 at an interval of 0.01.
From the results, we see that LLT can work well even the inlier
ratio below 0.1, and the matching performance becomes better
and stable as the inlier ratio increases above 0.1.

On the other hand, the absolute number of correct corre-
spondences in the data set can also influence the matching
performance. To validate this idea, we fix the inlier ratio to 0.2
and then vary the inlier number. More specifically, we vary the
inlier number from 5 to 110 at an interval of 3 in the rigid image
pair, from 5 to 67 at an interval of 2 in the affine image pair,
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and from 5 to 149 at an interval of 3 in the nonrigid image pair,
respectively. The precision and recall curves are given in the
right column of Fig. 4. We see that the matching performance
becomes better as the inlier number grows, and the results are
in general satisfactory when the initial inlier numbers are large
than about 30. That is, at a fixed inlier ratio, the putative sets
with fewer inliers are more sensitive to the noise and outliers.

V. DISCUSSION AND CONCLUSION

In this paper, we proposed a new feature matching algo-
rithm called LLT for remote sensing image registration. It
simultaneously estimates the transformation and generates ac-
curate correspondences by an iterative EM algorithm under
a maximum-likelihood framework with a local geometrical
constraint. The method is robust and general, which is able to
handle both rigid and nonrigid transformations in case of severe
outliers and hence can be applied to various registration tasks
in remote sensing. The qualitative and quantitative comparisons
on several types of remote sensing image pairs demonstrate
that our method significantly outperforms other state-of-the-art
methods for feature matching.

The local geometrical constraint plays a role of regularization
on the transformation T . In the nonrigid case, the regularization
may be assured in a more simple way by defining a smoothness
functional φ(T ), where a lower value of the functional corre-
sponds to smoother function, e.g., φ(T ) = ‖T ‖2Γ with ‖ · ‖Γ
being a norm in the RKHS H defined by the kernel Γ [63].
However, this type of regularization typically imposes global
smoothness on the transformation T and cannot be generalized
to the rigid or affine case since a linear transformation is always
smooth and φ(T ) is a constant. Our proposed LLT is general,
which can impose regularization in both linear and nonlinear
cases based on sustaining the local structure.

Our maximum-likelihood formulation and local geometrical
constraint are applicable for both 2-D and 3-D images. Using
the SIFT algorithm for putative correspondence construction,
we only demonstrate it on 2-D images. We will test the effec-
tiveness of our LLT for 3-D feature matching by extending the
feature extraction method to 3-D images.

APPENDIX A. VECTOR-VALUED REPRODUCING

KERNEL HILBERT SPACE

We review the basic theory of vector-valued RKHS, and for
further details and references, we refer to [66] and [72].

Let X be a set, e.g., X ⊆ IRP , Y a real Hilbert space with
inner product (norm) 〈·, ·〉, (‖ · ‖), e.g., Y ⊆ IRD; and H a
Hilbert space with inner product (norm) 〈·, ·〉H, (‖ · ‖H), where
P = D = 2 or 3 for point matching problem. Note that a norm
can be induced by an inner product, e.g., ∀ f ∈ H, ‖f‖H =√
〈f , f〉H. A Hilbert space is a real or complex inner product

space that is also a complete metric space with respect to the
distance function induced by the inner product. Thus, a vector-
valued RKHS can be defined as follows.

Definition 1: A Hilbert space H is an RKHS if the evaluation
maps evx : H → Y (i.e., evx(f) = f(x)) are bounded, i.e., if
∀x ∈ X , there exists a positive constant Cx such that

‖evx(f)‖ = ‖f(x)‖ ≤ Cx‖f‖H, ∀ f ∈ H. (25)

A reproducing kernel Γ : X × X → B(Y) is then defined
as Γ(x,x′) := evxev

∗
x′ , where B(Y) is the Banach space of

bounded linear operators (i.e., Γ(x,x′), ∀x,x′ ∈ X ) on Y , e.g.,
B(Y) ⊆ IRD×D , and ev∗x is the adjoint of evx. We have the
following two properties about the RKHS and kernel.

Remark 1: The kernel Γ reproduces the value of a function
f ∈ H at a point x ∈ X . Indeed, ∀x ∈ X and y ∈ Y , we have
ev∗xy = Γ(·,x)y, so that 〈f(x),y〉 = 〈f ,Γ(·,x)y〉H .

Remark 2: An RKHS defines a corresponding reproduc-
ing kernel. Conversely, a reproducing kernel defines a unique
RKHS.

More specifically, for any N ∈ IN, {xn}Nn=1 ⊆ X , and a
reproducing kernel Γ, a unique RKHS can be defined by
considering the completion of the space, i.e.,

HN =

{
N∑

n=1

Γ(·,xn)cn : cn ∈ Y
}

(26)

with respect to the norm induced by the inner product

〈f ,g〉H =

N∑
i,j=1

〈Γ(xj ,xi)ci,dj〉 ∀ f ,g ∈ HN (27)

where f =
∑N

i=1 Γ(·,xi)ci and g =
∑N

j=1 Γ(·,xj)dj .

APPENDIX B. PROOF OF THEOREM 1

For any given reproducing kernel Γ, we can define a unique
RKHS HN as in (26) in Appendix A. Let H⊥

N be a subspace
of H

H⊥
N = {f ∈ H : f(xn) = 0, n ∈ IN} . (28)

From the reproducing property, i.e., Remark 1, ∀ f ∈ H⊥
N〈

f ,

N∑
n=1

Γ(·,xn)cn

〉
H

=

N∑
n=1

〈f(xi), cn〉 = 0. (29)

Thus,H⊥
N is the orthogonal complement ofHN ; then, every f ∈

H can be uniquely decomposed in components along and per-
pendicular to HN : f = fN + f⊥N , where fN ∈ HN and f⊥N ∈
H⊥

N . That is, ∀ f ∈ H, we have f(xn) = fN (xn). Therefore,
the optimal displacement function f comes from the space HN ;
hence, the optimal solution of the objective function (10) has
the form (21).

To solve the coefficient set C, we consider the terms ofΨ that
are related to C and rewrite them in matrix form as follows:

Ψ(C) =
1

2σ2
tr
(
CTΓPΓC− 2CTΓP(Y −X)

)
+ λtr(CTΓQΓC+ 2CTΓQX). (30)

Taking derivative of (30) with respect to C and setting it to
zero, we obtain the linear system in (22). Thus, the coefficient
set {cn : n ∈ INN} of the optimal solution is determined by the
linear system (22).

REFERENCES

[1] B. Zitoví and J. Flusser, “Image registration methods: A survey,” Image
Vis. Comput., vol. 21, no. 11, pp. 977–1000, Oct. 2003.

[2] A. Wong and D. A. Clausi, “ARRSI: Automatic registration of remote-
sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 5,
pp. 1483–1493, May 2007.



6480 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 12, DECEMBER 2015

[3] L. G. Brown, “A survey of image registration techniques,” ACM Comput.
Surveys, vol. 24, no. 4, pp. 325–376, Dec. 1992.

[4] J. Ma, J. Zhao, Y. Ma, and J. Tian, “Non-rigid visible and infrared face
registration via regularized gaussian fields criterion,” Pattern Recognit.,
vol. 48, no. 3, pp. 772–784, Mar. 2015.

[5] A. Dempster, N. Laird, and D. B. Rubin, “Maximum likelihood from
incomplete data via the em algorithm,” J. R. Stat. Soc. Ser. B, vol. 39,
no. 1, pp. 1–38, 1977.

[6] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326,
Dec. 2000.

[7] N. Aronszajn, “Theory of reproducing kernels,” Trans. Amer. Math. Soc.,
vol. 68, no. 3, pp. 337–404, May 1950.

[8] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Proc. Int. Joint Conf. Artif. Intell.,
1981, vol. 2, pp. 674–679.

[9] Y. Liu, “Automatic range image registration in the markov chain,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 32, no. 1, pp. 12–29, Jan. 2010.

[10] X. Wang, B. Feng, X. Bai, W. Liu, and L. J. Latecki, “Bag of contour
fragments for robust shape classification,” Pattern Recognit., vol. 47,
no. 6, pp. 2116–2125, Jun. 2014.

[11] C. Yao, X. Bai, and W. Liu, “A unified framework for multi-oriented text
detection and recognition,” IEEE Trans. Image Process., vol. 23, no. 11,
pp. 4737–4749, Nov. 2014.

[12] X. Bai and L. J. Latecki, “Path similarity skeleton graph matching,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 7, pp. 1282–1292,
Jul. 2008.

[13] Y. Zhou, X. Bai, W. Liu, and L. J. Latecki, “Fusion with diffusion for
robust visual tracking,” in Proc. Adv. Neural Inf. Process. Syst., Dec. 2012,
vol. 4, pp. 2978–2986.

[14] X. Guo and X. Cao, “Good match exploration using triangle constraint,”
Pattern Recognit. Lett., vol. 33, no. 7, pp. 872–881, May 2012.

[15] J. Ma, J. Zhao, J. Tian, Z. Tu, and A. Yuille, “Robust estimation of
nonrigid transformation for point set registration,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., Jun. 2013, pp. 2147–2154.

[16] D. L. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes, “Medical image
registration,” Phys. Med. Biol., vol. 46, no. 3, R1–45, Mar. 2001.

[17] Y. Li, C. Chen, F. Yang, and J. Huang, “Deep sparse representation for
robust image registration,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., 2015, pp. 4894–4901.

[18] J. Jiang, R. Hu, Z. Wang, and Z. Han, “Face super-resolution via multi-
layer locality-constrained iterative neighbor embedding and intermedi-
ate dictionary learning,” IEEE Trans. Image Process., vol. 23, no. 10,
pp. 4220–4231, Oct. 2014.

[19] J. Jiang, R. Hu, Z. Wang, and Z. Han, “Noise robust face hallucination
via locality-constrained representation,” IEEE Trans. Multimedia, vol. 16,
no. 5, pp. 1268–1281, Aug. 2014.

[20] X. Bai, X. Yang, L. J. Latecki, W. Liu, and Z. Tu, “Learn-
ing context-sensitive shape similarity by graph transduction,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 32, no. 5, pp. 861–874,
May 2010.

[21] Y. Bentoutou, N. Taleb, K. Kpalma, and J. Ronsin, “An automatic image
registration for applications in remote sensing,” IEEE Trans. Geosci.
Remote Sens., vol. 43, no. 9, pp. 2127–2137, Sep. 2005.

[22] S. Dawn, V. Saxena, and B. Sharma, “Remote sensing image registra-
tion techniques: A survey,” in Image and Signal Processing, vol. 6134,
Berlin, Germany: Springer-Verlag, 2010, pp. 103–112.

[23] C. Chen, Y. Li, W. Liu, and J. Huang, “Image fusion with local spectral
consistency and dynamic gradient sparsity,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recog., 2014, pp. 2760–2765.

[24] L. Ma, M. M. Crawford, X. Yang, and Y. Guo, “Local-manifold-learning-
based graph construction for semisupervised hyperspectral image classifi-
cation,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2832–2844,
May 2015.

[25] J. Maintz and M. A. Viergever, “A survey of medical image registration,”
Med. Image Anal., vol. 2, no. 1, pp. 1–36, Mar. 1998.

[26] R. C. Gonzalez and P. Wintz, Digital Image Processing. New York,
NY, USA: Addison-Wesley, 1987.

[27] J. Le Moigne, W. J. Campbell, and R. Cromp, “An automated parallel
image registration technique based on the correlation of wavelet fea-
tures,” IEEE Trans. Geosci. Remote Sens., vol. 40, no. 8, pp. 1849–1864,
Aug. 2002.

[28] R. N. Bracewell, The Fourier Transform and its Applications. New
York, NY, USA: McGraw-Hill, 1986.

[29] B. S. Reddy and B. N. Chatterji, “An FFT-based technique for transla-
tion, rotation, and scale-invariant image registration,” IEEE Trans. Image
Process., vol. 5, no. 8, pp. 1266–1271, Aug. 1996.

[30] Q.-S. Chen, M. Defrise, and F. Deconinck, “Symmetric phase-only
matched filtering of Fourier-Mellin transforms for image registration and
recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, no. 12,
pp. 1156–1168, Dec. 1994.

[31] J. Inglada, V. Muron, D. Pichard, and T. Feuvrier, “Analysis of artifacts in
subpixel remote sensing image registration,” IEEE Trans. Geosci. Remote
Sens., vol. 45, no. 1, pp. 254–264, Jan. 2007.

[32] J. Liang et al., “Automatic registration of multisensor images using an
integrated spatial and mutual information (SMI) metric,” IEEE Trans.
Geosci. Remote Sens., vol. 52, no. 1, pp. 603–615, Jan. 2014.

[33] A. Rangarajan, H. Chui, and J. S. Duncan, “Rigid point feature registration
using mutual information,” Med. Image Anal., vol. 3, no. 4, pp. 425–440,
Dec. 1999.

[34] J. Ma, J. Zhao, J. Tian, A. L. Yuille, and Z. Tu, “Robust point matching
via vector field consensus,” IEEE Trans. Image Process., vol. 23, no. 4,
pp. 1706–1721, Apr. 2014.

[35] S. Pang, J. Xue, Q. Tian, and N. Zheng, “Exploiting local linear geometric
structure for identifying correct matches,” Comput. Vis. Image Under-
stand., vol. 128, pp. 51–64, Nov. 2014.

[36] J. Ma, Y. Ma, J. Zhao, and J. Tian, “Image feature matching via progres-
sive vector field consensus,” IEEE Signal Process. Lett., vol. 22, no. 6,
pp. 767–771, Jun. 2015.

[37] D. Lowe, “Distinctive image features from scale-invariant keypoints,” Int.
J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004.

[38] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recog-
nition using shape contexts,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 24, no. 4, pp. 509–522, Apr. 2002.

[39] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm
for model fitting with application to image analysis and automated cartog-
raphy,” Commun. ACM, vol. 24, no. 6, pp. 381–395, Jun. 1981.

[40] P. H. S. Torr and A. Zisserman, “MLESAC: A new robust estimator with
application to estimating image geometry,” Comput. Vis. Image Under-
stand., vol. 78, no. 1, pp. 138–156, Apr. 2000.

[41] O. Chum and J. Matas, “Matching with PROSAC—Progressive sample
consensus,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2005,
vol. 1, pp. 220–226.

[42] J. Zhao, J. Ma, J. Tian, J. Ma, and D. Zhang, “A robust method for vector
field learning with application to mismatch removing,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recog., Jun. 2011, pp. 2977–2984.

[43] J. Ma et al., “Robust L2E estimation of transformation for non-rigid
registration,” IEEE Trans. Signal Process., vol. 63, no. 5, pp. 1115–1129,
Mar. 2015.

[44] H. Liu and S. Yan, “Common visual pattern discovery via spatially coher-
ent correspondence,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
Jun. 2010, pp. 1609–1616.

[45] X. Li and Z. Hu, “Rejecting mismatches by correspondence function,” Int.
J. Comput. Vis., vol. 89, no. 1, pp. 1–17, Aug. 2010.

[46] A. Sedaghat, M. Mokhtarzade, and H. Ebadi, “Uniform robust scale-
invariant feature matching for optical remote sensing images,” IEEE
Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4516–4527, Nov. 2011.

[47] G.-R. Cai et al., “Perspective-sift: An efficient tool for low-altitude
remote sensing image registration,” Signal Process., vol. 93, no. 11,
pp. 3088–3110, Nov. 2013.

[48] Q. Li, G. Wang, J. Liu, and S. Chen, “Robust scale-invariant feature
matching for remote sensing image registration,” IEEE Geosci. Remote
Sens. Lett., vol. 6, no. 2, pp. 287–291, Apr. 2009.

[49] R. Bouchiha and K. Besbes, “Automatic remote-sensing image registra-
tion using surf,” Int. J. Comput. Theory Eng., vol. 5, no. 1, pp. 88–92,
Feb. 2013.

[50] A. Wong and D. A. Clausi, “AISIR: Automated inter-sensor/inter-band
satellite image registration using robust complex wavelet feature rep-
resentations,” Pattern Recognit. Lett., vol. 31, no. 10, pp. 1160–1167,
Jul. 2010.

[51] G.-J. Wen, J.-J. Lv, and W.-X. Yu, “A high-performance feature-
matching method for image registration by combining spatial and sim-
ilarity information,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 4,
pp. 1266–1277, Apr. 2008.

[52] Z. Song, S. Zhou, and J. Guan, “A novel image registration algorithm for
remote sensing under affine transformation,” IEEE Trans. Geosci. Remote
Sens., vol. 52, no. 8, pp. 4895–4912, Aug. 2014.

[53] Z. Liu, J. An, and Y. Jing, “A simple and robust feature point matching
algorithm based on restricted spatial order constraints for aerial image reg-
istration,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 2, pp. 514–527,
Feb. 2012.

[54] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 2, pp. 239–256,
Feb. 1992.

[55] Y. Liu, “Improving ICP with easy implementation for free-form surface
matching,” Pattern Recognit., vol. 37, no. 2, pp. 211–226, Feb. 2004.

[56] H. Chui and A. Rangarajan, “A new point matching algorithm for non-
rigid registration,“ Comput. Vis. Image Understand., vol. 89, no. 2/3,
pp. 114–141, Feb. 2003.

[57] A. Myronenko and X. Song, “Point set registration: Coherent point drift,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 12, pp. 2262–2275,
Dec. 2010.



MA et al.: ROBUST FEATURE MATCHING FOR REMOTE SENSING IMAGE REGISTRATION VIA LLT 6481

[58] S. Ge, G. Fan, and M. Ding, “Non-rigid point set registration with global-
local topology preservation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog. Workshops, Jun. 2014, pp. 245–251.

[59] S. Ge and G. Fan, “Non-rigid articulated point set registration for hu-
man pose estimation,” in Proc. IEEE Winter Conf. Appl. Comput. Vis.,
Jan. 2015, pp. 94–101.

[60] R. Horaud, F. Forbes, M. Yguel, G. Dewaele, and J. Zhang, “Rigid and
articulated point registration with expectation conditional maximization,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 3, pp. 587–602,
Mar. 2011.

[61] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
NY, USA: Springer-Verlag, 2006.

[62] J. Ma, J. Chen, D. Ming, and J. Tian, “A mixture model for robust point
matching under multi-layer motion,” PloS One, vol. 9, no. 3, Mar. 2014,
Art. ID. e92282.

[63] T. Evgeniou, M. Pontil, and T. Poggio, “Regularization networks and
support vector machines,” Comput. Math., vol. 13, no. 1, pp. 1–50,
Apr. 2000.

[64] S. Umeyama, “Least-squares estimation of transformation parameters
between two point patterns,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 13, no. 4, pp. 376–380, Apr. 1991.

[65] A. Myronenko and X. Song, “On the closed-form solution of the rota-
tion matrix arising in computer vision problems,” Dept. Sci. Eng., Ore-
gon Health Sci. Univ., Portland, OR, USA. unpublished paper. [Online].
Available: http://arxiv.org/abs/0904.1613

[66] C. A. Micchelli and M. Pontil, “On learning vector-valued functions,”
Neural Comput., vol. 17, no. 1, pp. 177–204, Jan. 2005.

[67] R. Rifkin, G. Yeo, and T. Poggio, “Regularized least-squares classifica-
tion,” in Advances in Learning Theory: Methods, Models and Applica-
tions, Amsterdam, The Netherlands: IOS Press, 2003.

[68] J. Ma, J. Zhao, J. Tian, X. Bai, and Z. Tu, “Regularized vector field learn-
ing with sparse approximation for mismatch removal,” Pattern Recognit.,
vol. 46, no. 12, pp. 3519–3532, Dec. 2013.

[69] A. L. Yuille, “Generalized deformable models, statistical physics, and
matching problems,” Neural Comput., vol. 2, no. 1, pp. 1–24, Mar. 1990.

[70] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975.

[71] A. Vedaldi and B. Fulkerson, “VLFeat—An open and portable library
of computer vision algorithms,” in Proc. Int. Conf. Multimedia, 2010,
pp. 1469–1472.

[72] C. Carmeli, E. De Vito, and A. Toigo, “Vector valued reproducing kernel
Hilbert spaces of integrable functions and mercer theorem,” Anal. Appl.,
vol. 4, no. 10, pp. 377–408, Oct. 2006.

Jiayi Ma received the B.S. degree in information and
computing science and the Ph.D. degree in control
science and engineering from the Huazhong Univer-
sity of Science and Technology, Wuhan, China, in
2008 and 2014, respectively.

From 2012 to 2013, he was with the Department
of Statistics, University of California at Los Angeles,
Los Angeles, CA, USA. He is currently a Post-
doctoral Researcher with the Electronic Information
School, Wuhan University, Wuhan. His current re-
search interests include computer vision, machine

learning, and pattern recognition.

Huabing Zhou received the Ph.D. degree in control
science and engineering from the Huazhong Uni-
versity of Science and Technology, Wuhan, China,
in 2012.

He is currently an Assistant Professor with
the School of Computer Science and Engineering,
Wuhan Institute of Technology, Wuhan. His research
interests include remote sensing image analysis,
computer vision, and intelligent robotics.

Ji Zhao received the B.S. degree in automation from
the Nanjing University of Posts and Telecommu-
nications, Nanjing, China, in 2005 and the Ph.D.
degree in control science and engineering from the
Huazhong University of Science and Technology,
Wuhan, China, in 2012.

From 2012 to 2014, he was a Postdoctoral
Research Associate with the Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, USA.
He is currently a Researcher with Samsung Research
Center, Beijing, China. His research interests include

computer vision and machine learning.

Yuan Gao received the B.S. degree in biomedical
engineering and the M.S. degree in pattern recogni-
tion and intelligent systems from the Huazhong Uni-
versity of Science and Technology, Wuhan, China, in
2009 and 2012, respectively. He is currently work-
ing toward the Ph.D. degree with the Department
of Electronic Engineering, City University of Hong
Kong, Kowloon, Hong Kong.

His research interests include machine learning,
pattern recognition, and applications.

Junjun Jiang received the B.S. degree in infor-
mation and computing science from Huaqiao Uni-
versity, Quanzhou, China, in 2009 and the Ph.D.
degree in communication and information system
from Wuhan University, Wuhan, China, in 2014.

He is currently an Associate Professor with the
School of Computer Science, China University of
Geosciences, Wuhan. He is the author or coauthor
of more than 40 scientific articles and is the holder
of four Chinese patents. His research interests in-
clude applications of image processing and pattern

recognition in video surveillance, image super-resolution, image interpolation,
and face recognition.

Jinwen Tian received the Ph.D. degree in pat-
tern recognition and intelligent systems from the
Huazhong University of Science and Technology
(HUST), Wuhan, China, in 1998.

He is currently a Professor and a Ph.D. Supervisor
of pattern recognition and artificial intelligence with
HUST. His main research interests include remote
sensing image analysis, wavelet analysis, image
compression, computer vision, and fractal geometry.


