
Aux-NAS: Exploiting Auxiliary Labels with
Negligibly Extra Inference Cost

Yuan Gao, Weizhong Zhang, Wenhan Luo, Lin Ma, Jin-Gang Yu, Gui-Song Xia, Jiayi Ma

Experiments

Motivation

The Asymmetric Architecture

The Network Architecture & Optimization Features

Our Code is Released!
https://github.com/ethanygao/

Aux-NAS

• Our method is general w.r.t.:
1. Task Combinations, i.e.,
 Pixel Labeling Tasks: Semantic Seg., Normal & Disp. Pred.

Image Level Tasks: Object & Scene Classification.
2. Networks, CNNs: VGG & ResNet; Transformers: ViT-Base.
3. Datasets: NYUv2, CityScapes, Taskonomy.
• Our method can be integrated with existing Multi-Task Optimizations

methods, e.g., PCGrad, DWA, etc.
• Our method scales to more auxiliary tasks Linearly.

• To avoid negative transfer between primary and auxiliary tasks:
Ø Architecture-based methods with soft parameter sharing is

applied.
• To achieve a single task inference cost of the primary task:
Ø We design an asymmetric network architecture that produces

switchable networks between the training (more complex) and
the inference (more efficient) phases

Soft Parameter Sharing for MTL The proposed Asymmetric Architecture

Our method follows the Right Subfigure:
• Only exploit the auxiliary gradients (rather than features) as

additional regularization for the primary task.
• We can remove the auxiliary computations when inferencing

the primary task (since the gradients are no longer required
during the inference).

All the experiments demonstrate significant improvements w.r.t. SOTAs.

Ablation Analysis

VGG-16, Seg (Aux) +
Disparity (Aux) Tasks

ResNet-50, Obj. Cls. (Prim)
+ Scene Cls. (Aux)

ViT-Base
Normal (Prim) + Seg

(Aux) Tasks

Key Ideas

• Exploiting auxiliary tasks to boost the performance of the primary
task;
• Preserving a single task inference cost of the primary task.

• Based on the asymmetric architecture design, we implement our model
with two methods, which differ from:
Ø What auxiliary information we exploit;
Ø how we optimize the network architecture.

• Method 1: Aux-G (Basic, Left)
Ø Directly using the auxiliary gradients to train the primary task.
Ø Directly exploiting the asymmetric architecture.

• Method 2: Aux-NAS (Advanced, Right)
Ø Using both the auxiliary gradients and features.
Ø Using Neural Arch Search (NAS) to optimize the network so that it

converges to an asymmetric architecture with only primary-to-auxiliary
connections.

• Both of our methods converge such that auxiliary computations can be
safely removed, leading to an inference architecture depicted in the Middle.

• For Method 2: Aux-NAS, we implement regularized NAS with L1 Norm on
all the aux-to-prim architecture weights 𝜶𝑷 to gradually prune them out.

• The proposed fusion operator. The
above regularized NAS objective
enables to cut off through the dash line

