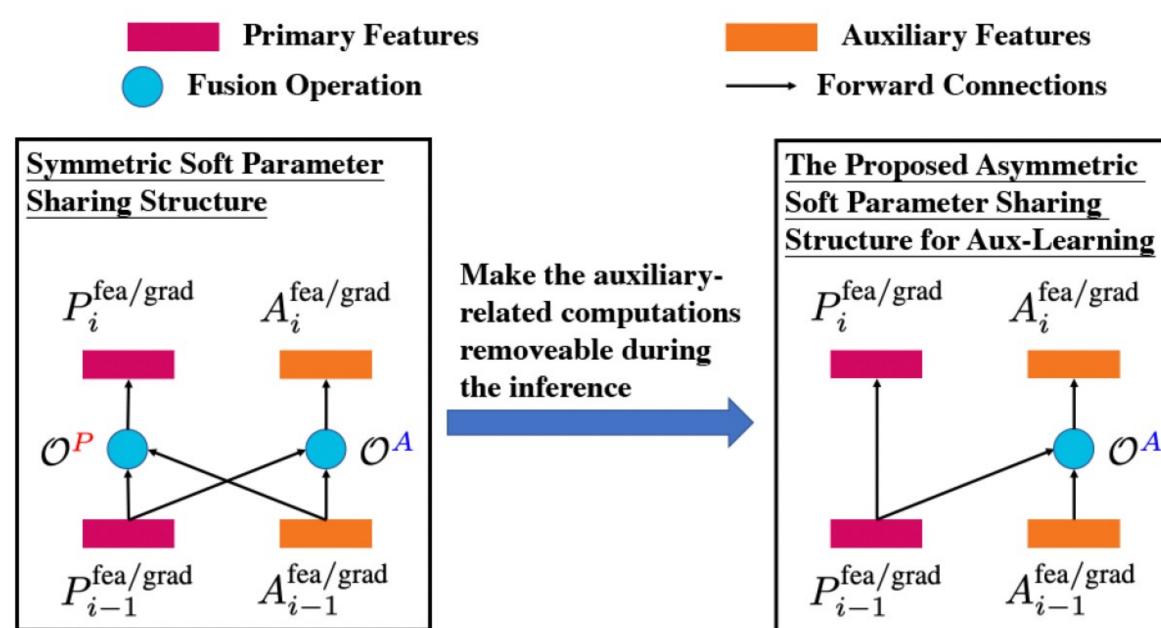


Motivation

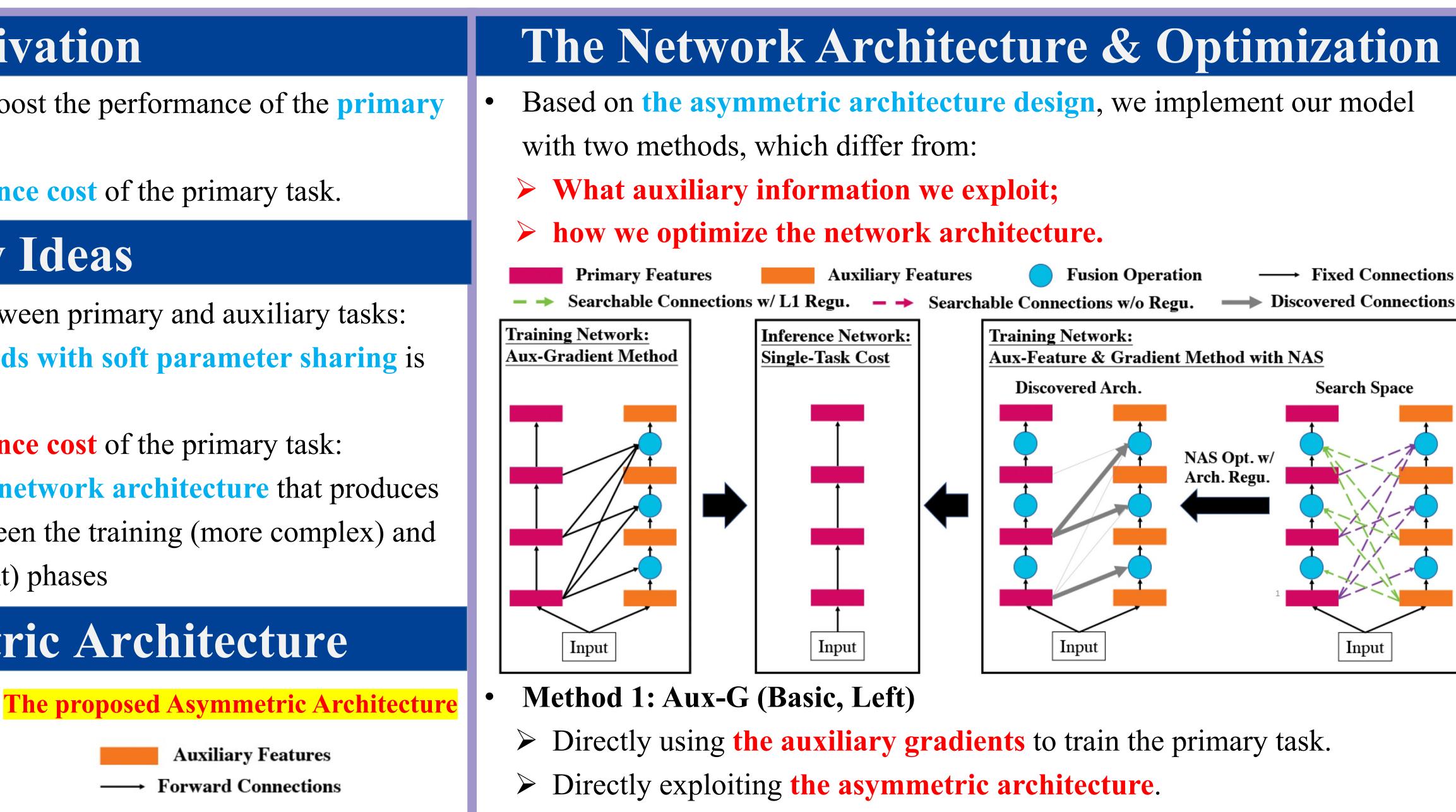

- Exploiting auxiliary tasks to boost the performance of the primary task;
- Preserving a single task inference cost of the primary task.

Key Ideas

- To avoid negative transfer between primary and auxiliary tasks:
 - > Architecture-based methods with soft parameter sharing is applied.
- To achieve a single task inference cost of the primary task:
 - > We design an asymmetric network architecture that produces switchable networks between the training (more complex) and the inference (more efficient) phases

The Asymmetric Architecture

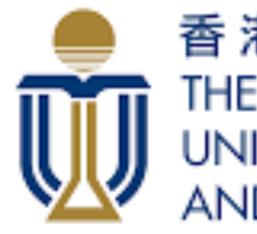
Soft Parameter Sharing for MTL



Our method follows the **Right** Subfigure:

- Only exploit the auxiliary gradients (rather than features) as additional regularization for the primary task.
- We can remove the auxiliary computations when inferencing \bullet the primary task (since the gradients are no longer required during the inference).

Aux-NAS: Exploiting Auxiliary Labels with **Negligibly Extra Inference Cost**


Yuan Gao, Weizhong Zhang, Wenhan Luo, Lin Ma, Jin-Gang Yu, Gui-Song Xia, Jiayi Ma

- Method 2: Aux-NAS (Advanced, Right)
- > Using both the auxiliary gradients and features.
- ➤ Using Neural Arch Search (NAS) to optimize the network so that it converges to an asymmetric architecture with only primary-to-auxiliary connections.
- Both of our methods converge such that **auxiliary computations can be safely removed**, leading to an inference architecture depicted in the **Middle**.
- For Method 2: Aux-NAS, we implement regularized NAS with L1 Norm on all the aux-to-prim architecture weights α^P to gradually prune them out. $\min_{\boldsymbol{\alpha^{P}},\boldsymbol{\alpha^{A}},\boldsymbol{w}} \mathcal{L}^{\mathcal{P}}(\mathbf{P}(\boldsymbol{\alpha^{P}},\boldsymbol{w})) + \mathcal{L}^{\mathcal{A}}(\mathbf{A}(\boldsymbol{\alpha^{A}},\boldsymbol{w})) + \mathcal{R}(\boldsymbol{\alpha^{P}}), \quad \text{with} \quad \mathcal{R}(\boldsymbol{\alpha^{P}}) = \lambda ||\boldsymbol{\alpha^{P}}||_{1},$
- The proposed fusion operator. The above regularized NAS objective enables to cut off through the dash line

 \mathcal{O}^A

Features • Our method is **general** w.r.t.: 1. Task Combinations, i.e., **Pixel Labeling Tasks**: Semantic Seg., Normal & Disp. Pred. **Image Level Tasks**: Object & Scene Classification. 2. *Networks*, CNNs: VGG & ResNet; Transformers: ViT-Base. → Fixed Connections Fusion Operation **Discovered** Connections 3. *Datasets*: NYUv2, CityScapes, Taskonomy. • Our method can be integrated with existing *Multi-Task Optimizations* Aux-Feature & Gradient Method with NAS Discovered Arch. Search Space methods, e.g., PCGrad, DWA, etc. • Our method scales to more auxiliary tasks *Linearly*. NAS Opt. w/ Arch. Regu. Experiments All the experiments demonstrate significant improvements w.r.t. SOTAs. VGG-16, Seg (Aux) +ResNet-50, Obj. Cls. (Prim) Disparity (Aux) Tasks + Scene Cls. (Aux) Input Input CityScapes (%) (†) Primary: Seg mIoU PA 68.3 Single 94 70.0 Aux-Head 94 70.3 94 Adashare 70.1 Adashare-Aux 94 70.1 Aux-G-Stage 94 70.2 Aux-G-Layer 94 71.1 Aux-NAS <u>95</u>.

	NYU v2, Pri- Err (\downarrow)				Within t° (%) (\uparrow)	
ViT-Base Normal (Prim) + Seg (Aux) Tasks	mary: Normal	Mean	Med.	RMSE	11.25	22.5
	Single	14.6	12.9	17.7	43.2	80.8
	Aux-Head	14.8	13.2	17.9	41.9	80.1
	Adashare	13.2	11.4	16.8	49.7	82.2
	Adashare-Aux	12.9	11.0	16.7	51.9	85.5
	Aux-G-Layer	12.6	10.7	15.7	52.3	85.9
	Aux-NAS	<u>12.5</u>	<u>10.3</u>	<u>15.6</u>	<u>53.8</u>	<u>85.9</u>
		-				

Ablation Analysis

			Seg. (%) (†)		
Gradient	Feature	NAS	mIoU	PAcc	
\checkmark			35.4	65.9	
\checkmark		\checkmark	35.7	66.0	
\checkmark	\checkmark	\checkmark	<u>36.0</u>	<u>66.1</u>	

●●● Weighted Concat. by Arch. Weight → 1x1 Conv

香港科技大學 THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

	Taskonomy	(%)(↑)		
cc	Primary: Object Cls.	Top-1	Top-5	
.5	Single	34.3	65.9	
.6	Aux-Head	34.7	66.6	
.7	Adashare	35.9	67.1	
.8	Adashare-Aux	36.3	67.7	
.8	Aux-G-Stage	37.4	67.9	
.8	Aux-G-Layer	37.2	68.3	
5.0	Aux-NAS	<u>39.8</u>	<u>70.7</u>	

Our Code is Released!

https://github.com/ethanygao/

