

Motivation

Address Multi-Task Learning (MTL) with a large number of tasks by Multi-Task Grouping (MTG).

Given N tasks, we identify the best task groups from 2^N candidates and train the model weights simultaneously in one-shot, with the highorder task affinity fully exploited.

Key Ideas & Features

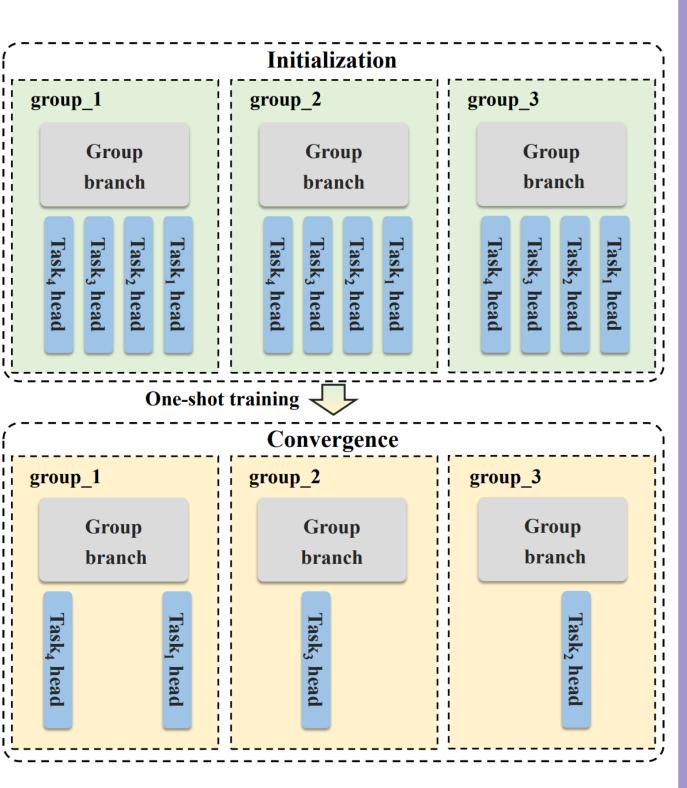
We formulate MTG as a fully **differentiable pruning** problem on an adaptive network architecture determined by an unknown categorical distribution. Our method exhibits the following features:

Group identification is formulated as **learning** a relaxed categorical **distribution** rather than heuristics.

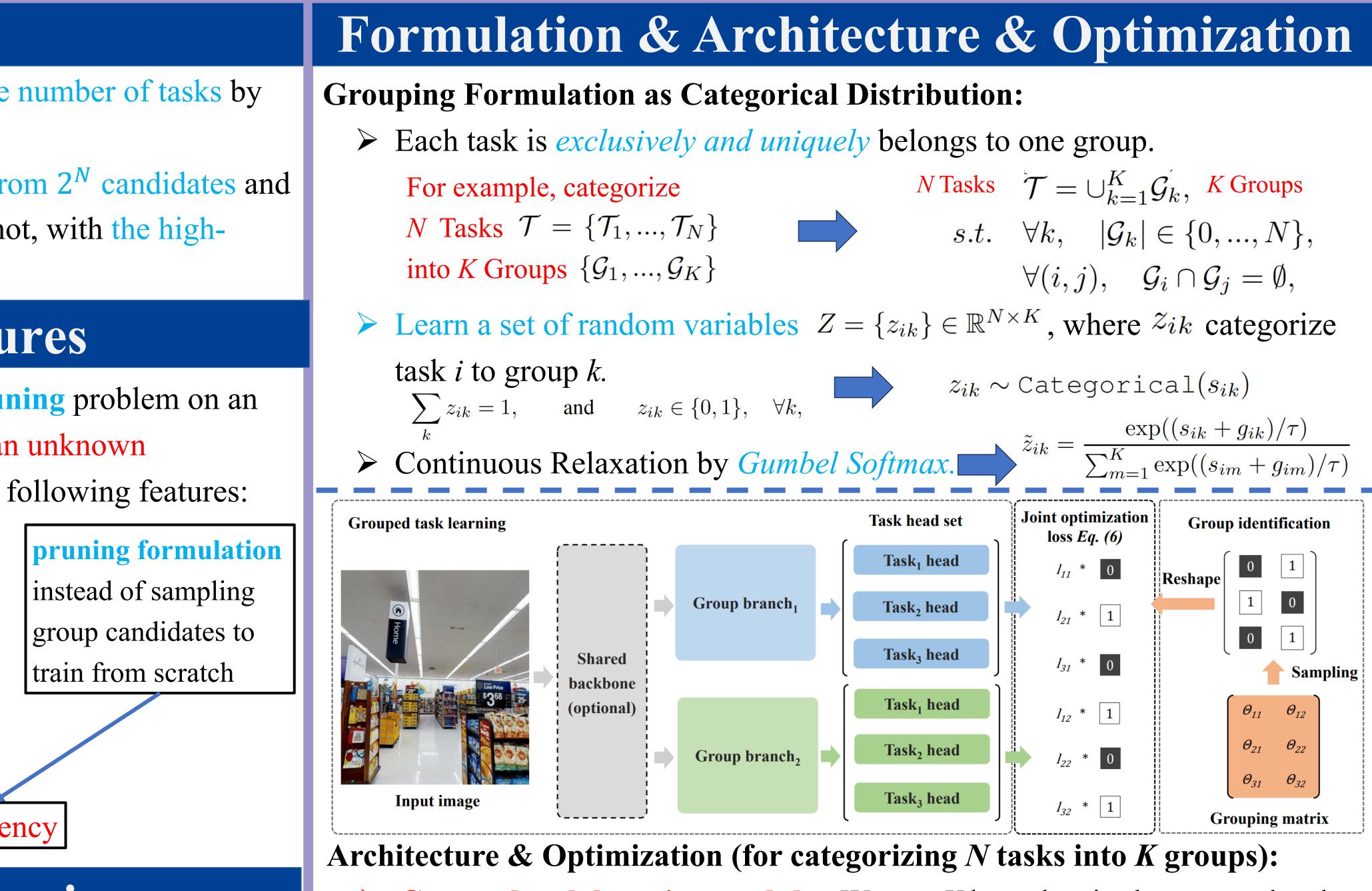
One-shot training eliminates the objective bias between group identification and model grouped task learning.

train from scratch

Efficiency


MTG as Network Pruning

Initialization: Each group connects (to all the task heads, ensuring full exploration of high order taskaffinity.


Accuracy

Convergence: Learn a categorical distribution to *exclusively and uniquely* categorize each task into one group.

One-shot Training: Simultaneously prune task heads and train the weights of group-specific branches.

DMTG: One-Shot Differentiable Multi-Task Grouping Yuan Gao, Shuguo Jiang, Moran Li, Jin-Gang Yu, Gui-Song Xia

Grouped task learning module. We use K branches in the grouped task learning module, each linked to N task heads, optimizing high-order task affinity with efficient O(K) training complexity, and further reduce complexity with optional group-wise shared layers. **Group identification module.** The categorization of N tasks into K groups involves learning an unknown categorical distribution, which determines an adaptive network architecture and can be optimized jointly with model weights in a one-shot pruning problem.

> Joint optimization. The discrete categorical distribution is continuously relaxed, allowing joint optimization of group identification parameters and grouped task learning weights in one-shot using gradients from the task loss. The continuous relaxation is facilitated by the reparameterization trick from the concrete distribution and the *Gumbel Softmax*.

Compared with SOTAs:

Taskonomy dataset with 5 tasks (Taskonomy-9)

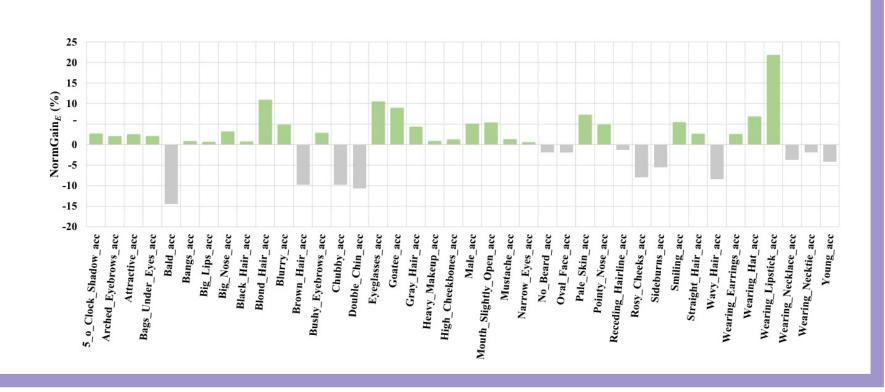
Groups	Methods	Total Loss ↓	NormGain _L (%) \uparrow	Relative Train. Complex.			h A da	togot w	ith O tool	α (Colob Λ 0)
-	Naive MTL	0.223	-	1		Cele	DA ua	lasel w	itii 9 task	s (CelebA-9)
-	STL	0.199	+57.35	O(N)						
	RG	0.231	-21.73	O(K)	-	Groups	Methods	Total Error↓	NormGain _E (%) \uparrow	Relative Encoder Complex.
	HOA	0.190	+47.78	$O(N^2) + O(K)$	=	-	Naive MTL	56.13	-	1
K = 3	TAG	0.210	+45.02	O(N) + O(K)		-	STL	59.93	-8.70	O(N)
	MTG-Net	0.191	+57.83	-	-		RG	54.87	+1.06	O(K)
	Ours	0.173	+63.85	O(K)	$\overline{O(K)}$		HOA	53.60	+3.27	$O(N^2) + O(K)$
	RG	0.204	+19.90	O(K)		K = 2	TAG	53.41	+4.38	O(N) + O(K)
	HOA	0.195	+47.95	$O(N^2) + O(K)$	$O(N^2) + O(K)$		Ours	52.97	+5.75	O(K)
K = 4	TAG	0.190	+49.41	O(N) + O(K)	-		RG	54.57	+1.54	O(K)
	MTG-Net	0.191	+57.83	-			HOA	54.04	+3.62	$O(N^2) + O(K)$
	Ours	0.170	+64.58	O(K)	K = 3		TAG	54.37	+2.08	O(N) + O(K)
	RG	0.198	+28.40	O(K)			Ours	53.67	+4.64	O(K)
	HOA	0.195	+47.95	$O(N^2) + O(K)$	-		RG	54.57	+1.54	O(K)
K = 5	TAG	0.190	+49.41	O(N) + O(K)	K =		HOA	54.14	+2.53	$O(N^2) + O(K)$
	MTG-Net	0.191	+57.83	_		K = 4	TAG	54.11	+3.17	O(N) + O(K)
	Ours	0.168	+65.01	O(K)	-		Ours	53.62	+4.62	O(K)

Taskonomy dataset with 5 tasks (Taskonomy-5) w.r.t each input task

Groups	Methods	Depth Estimation		Surface Normal		Semantic Segmentation		Keypoint Detection		Edge Detection	
Oroups		Loss ↓	NormGain _L (%) \uparrow	Loss \downarrow	NormGain _L (%) \uparrow	Loss ↓	NormGain _L (%) \uparrow	Loss ↓	NormGain _L (%) \uparrow	Loss ↓	NormGain _{L} (%) $\stackrel{<}{}$
-	Naive MTL	8.67e-3	-	1.07e-1	-	8.28e-2	-	1.19e-2	-	1.31e-2	-
-	STL	1.60e-5	+99.82	1.07e-1	-0.18	9.16e-2	-10.63	1.30e-4	+98.91	1.56e-4	+98.81
K = 3	RG	2.57e-2	-195.88	1.08e-1	-0.81	8.43e-2	-1.88	6.87e-3	+42.46	6.88e-3	+47.45
	HOA	5.85e-3	+32.47	1.11e-1	-4.37	7.33e-2	+11.49	2.00e-6	+99.98	8.60e-5	+99.34
	TAG	5.15e-3	+40.59	1.21e-1	-12.93	8.43e-2	-1.88	2.00e-6	+99.98	8.60e-5	+99.34
	MTG-Net	2.04e-4	+97.65	1.07e-1	+0.00	8.28e-2	+0.00	6.39e-4	+94.65	4.08e-4	+96.88
	Ours	1.19e-7	+100.00	1.07e-1	-0.05	6.65e-2	+19.64	4.30e-5	+99.63	3.58e-7	+100.00
K = 4	RG	5.15e-3	+40.59	1.07e-1	+0.00	7.33e-2	+11.49	1.19e-2	+0.00	6.88e-3	+47.45
	HOA	5.15e-3	+40.59	1.06e-1	+0.44	8.33e-2	-0.61	2.00e-6	+99.98	8.60e-5	+99.34
	TAG	5.15e-3	+40.59	1.11e-1	-4.37	7.33e-2	+11.49	2.00e-6	+99.98	8.60e-5	+99.34
	MTG-Net	2.04e-4	+97.65	1.07e-1	+0.00	8.28e-2	+0.00	6.39e-4	+94.65	4.08e-4	+96.88
	Ours	1.19e-7	+100.00	1.05e-1	+1.43	6.46e-2	+21.96	4.70e-5	+99.61	1.20e-5	+99.91
K = 5	RG	5.15e-3	+40.59	1.07e-1	+0.00	7.33e-2	+11.49	6.87e-3	+42.46	6.88e-3	+47.45
	HOA	5.15e-3	+40.59	1.06e-1	+0.44	8.33e-2	-0.61	2.00e-6	+99.98	8.60e-5	+99.34
	TAG	5.15e-3	+40.59	1.11e-1	-4.37	7.33e-2	+11.49	2.00e-6	+99.98	8.60e-5	+99.34
	MTG-Net	2.04e-4	+97.65	1.07e-1	+0.00	8.28e-2	+0.00	6.39e-4	+94.65	4.08e-4	+96.88
	Ours	1.19e-7	+100.00	1.05e-1	+1.62	6.34e-2	+23.43	1.00e-6	+99.99	4.17e-7	+100.00

Ablation Analysis:

- Our proposed MTG outperforms two-shot methods given the same group categorization.
- Our method generalizes to different backbones including CNNs and transformers.
- Our method scales to a large number of input tasks, i.e., CelebA dataset with **40** tasks.


Our Code is Released!

https://github.com/ ethanygao/DMTG

Experiments

_	Groups	Methods	Total Loss \downarrow	NormGain _L (%) \uparrow
-	K = 3	Retrain from Scratch	0.183	+53.34
		Retrain from Naive MTL Init.	0.194	+57.10
		Ours (one-shot)	0.173	+63.85
-	K = 4	Retrain from Scratch	0.183	+53.34
		Retrain from Naive MTL Init.	0.194	+57.10
		Ours (one-shot)	0.170	+64.58
-	K = 5	Retrain from Scratch	0.190	+59.47
		Retrain from Naive MTL Init.	0.194	+58.87
		Ours (one-shot)	0.168	+65.01

Backbone	Methods	Total Loss \downarrow	NormGain _{L} (%)		
	Naive MTL	0.453	-		
	STL	0.435	+58.72		
ViT-Base	HOA	0.379	+62.22		
	TAG	0.439	+58.72		
	MTG-Net	0.403	+47.65		
	Ours	0.326	+68.31		

